Metamath Proof Explorer


Theorem clnbupgrel

Description: A member of the closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 10-May-2025)

Ref Expression
Hypotheses clnbuhgr.v V = Vtx G
clnbuhgr.e E = Edg G
Assertion clnbupgrel Could not format assertion : No typesetting found for |- ( ( G e. UPGraph /\ K e. V /\ N e. V ) -> ( N e. ( G ClNeighbVtx K ) <-> ( N = K \/ { N , K } e. E ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 clnbuhgr.v V = Vtx G
2 clnbuhgr.e E = Edg G
3 1 2 clnbupgr Could not format ( ( G e. UPGraph /\ K e. V ) -> ( G ClNeighbVtx K ) = ( { K } u. { n e. V | { K , n } e. E } ) ) : No typesetting found for |- ( ( G e. UPGraph /\ K e. V ) -> ( G ClNeighbVtx K ) = ( { K } u. { n e. V | { K , n } e. E } ) ) with typecode |-
4 3 eleq2d Could not format ( ( G e. UPGraph /\ K e. V ) -> ( N e. ( G ClNeighbVtx K ) <-> N e. ( { K } u. { n e. V | { K , n } e. E } ) ) ) : No typesetting found for |- ( ( G e. UPGraph /\ K e. V ) -> ( N e. ( G ClNeighbVtx K ) <-> N e. ( { K } u. { n e. V | { K , n } e. E } ) ) ) with typecode |-
5 4 3adant3 Could not format ( ( G e. UPGraph /\ K e. V /\ N e. V ) -> ( N e. ( G ClNeighbVtx K ) <-> N e. ( { K } u. { n e. V | { K , n } e. E } ) ) ) : No typesetting found for |- ( ( G e. UPGraph /\ K e. V /\ N e. V ) -> ( N e. ( G ClNeighbVtx K ) <-> N e. ( { K } u. { n e. V | { K , n } e. E } ) ) ) with typecode |-
6 elun N K n V | K n E N K N n V | K n E
7 preq2 n = N K n = K N
8 7 eleq1d n = N K n E K N E
9 8 elrab N n V | K n E N V K N E
10 9 orbi2i N K N n V | K n E N K N V K N E
11 6 10 bitri N K n V | K n E N K N V K N E
12 elsng N V N K N = K
13 12 3ad2ant3 G UPGraph K V N V N K N = K
14 13 orbi1d G UPGraph K V N V N K N V K N E N = K N V K N E
15 11 14 bitrid G UPGraph K V N V N K n V | K n E N = K N V K N E
16 ibar N V K N E N V K N E
17 prcom K N = N K
18 17 eleq1i K N E N K E
19 16 18 bitr3di N V N V K N E N K E
20 19 orbi2d N V N = K N V K N E N = K N K E
21 20 3ad2ant3 G UPGraph K V N V N = K N V K N E N = K N K E
22 5 15 21 3bitrd Could not format ( ( G e. UPGraph /\ K e. V /\ N e. V ) -> ( N e. ( G ClNeighbVtx K ) <-> ( N = K \/ { N , K } e. E ) ) ) : No typesetting found for |- ( ( G e. UPGraph /\ K e. V /\ N e. V ) -> ( N e. ( G ClNeighbVtx K ) <-> ( N = K \/ { N , K } e. E ) ) ) with typecode |-