Metamath Proof Explorer


Theorem clnbusgrfi

Description: The closed neighborhood of a vertex in a simple graph with a finite number of edges is a finite set. (Contributed by AV, 10-May-2025)

Ref Expression
Hypotheses clnbusgrf1o.v V = Vtx G
clnbusgrf1o.e E = Edg G
Assertion clnbusgrfi Could not format assertion : No typesetting found for |- ( ( G e. USGraph /\ E e. Fin /\ U e. V ) -> ( G ClNeighbVtx U ) e. Fin ) with typecode |-

Proof

Step Hyp Ref Expression
1 clnbusgrf1o.v V = Vtx G
2 clnbusgrf1o.e E = Edg G
3 rabfi E Fin e E | U e Fin
4 3 3ad2ant2 G USGraph E Fin U V e E | U e Fin
5 1 2 edgusgrclnbfin Could not format ( ( G e. USGraph /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> { e e. E | U e. e } e. Fin ) ) : No typesetting found for |- ( ( G e. USGraph /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> { e e. E | U e. e } e. Fin ) ) with typecode |-
6 5 3adant2 Could not format ( ( G e. USGraph /\ E e. Fin /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> { e e. E | U e. e } e. Fin ) ) : No typesetting found for |- ( ( G e. USGraph /\ E e. Fin /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> { e e. E | U e. e } e. Fin ) ) with typecode |-
7 4 6 mpbird Could not format ( ( G e. USGraph /\ E e. Fin /\ U e. V ) -> ( G ClNeighbVtx U ) e. Fin ) : No typesetting found for |- ( ( G e. USGraph /\ E e. Fin /\ U e. V ) -> ( G ClNeighbVtx U ) e. Fin ) with typecode |-