Step |
Hyp |
Ref |
Expression |
1 |
|
simpll3 |
|
2 |
|
simpll1 |
|
3 |
|
simpll2 |
|
4 |
|
simplrl |
|
5 |
|
simplrr |
|
6 |
|
simprl1 |
|
7 |
|
n0 |
|
8 |
6 7
|
sylib |
|
9 |
2
|
adantr |
|
10 |
|
topontop |
|
11 |
9 10
|
syl |
|
12 |
3
|
adantr |
|
13 |
|
toponuni |
|
14 |
9 13
|
syl |
|
15 |
12 14
|
sseqtrd |
|
16 |
|
simpr |
|
17 |
16
|
elin2d |
|
18 |
4
|
adantr |
|
19 |
16
|
elin1d |
|
20 |
|
eqid |
|
21 |
20
|
clsndisj |
|
22 |
11 15 17 18 19 21
|
syl32anc |
|
23 |
8 22
|
exlimddv |
|
24 |
|
simprl2 |
|
25 |
|
n0 |
|
26 |
24 25
|
sylib |
|
27 |
2
|
adantr |
|
28 |
27 10
|
syl |
|
29 |
3
|
adantr |
|
30 |
27 13
|
syl |
|
31 |
29 30
|
sseqtrd |
|
32 |
|
simpr |
|
33 |
32
|
elin2d |
|
34 |
5
|
adantr |
|
35 |
32
|
elin1d |
|
36 |
20
|
clsndisj |
|
37 |
28 31 33 34 35 36
|
syl32anc |
|
38 |
26 37
|
exlimddv |
|
39 |
|
simprl3 |
|
40 |
2 10
|
syl |
|
41 |
2 13
|
syl |
|
42 |
3 41
|
sseqtrd |
|
43 |
20
|
sscls |
|
44 |
40 42 43
|
syl2anc |
|
45 |
44
|
sscond |
|
46 |
39 45
|
sstrd |
|
47 |
|
ssv |
|
48 |
|
ssdif |
|
49 |
47 48
|
ax-mp |
|
50 |
46 49
|
sstrdi |
|
51 |
|
disj2 |
|
52 |
50 51
|
sylibr |
|
53 |
|
simprr |
|
54 |
44 53
|
sstrd |
|
55 |
2 3 4 5 23 38 52 54
|
nconnsubb |
|
56 |
55
|
expr |
|
57 |
1 56
|
mt2d |
|
58 |
57
|
ex |
|
59 |
58
|
ralrimivva |
|
60 |
|
simp1 |
|
61 |
13
|
sseq2d |
|
62 |
61
|
biimpa |
|
63 |
20
|
clsss3 |
|
64 |
10 62 63
|
syl2an2r |
|
65 |
13
|
adantr |
|
66 |
64 65
|
sseqtrrd |
|
67 |
66
|
3adant3 |
|
68 |
|
connsub |
|
69 |
60 67 68
|
syl2anc |
|
70 |
59 69
|
mpbird |
|