| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll3 |
|
| 2 |
|
simpll1 |
|
| 3 |
|
simpll2 |
|
| 4 |
|
simplrl |
|
| 5 |
|
simplrr |
|
| 6 |
|
simprl1 |
|
| 7 |
|
n0 |
|
| 8 |
6 7
|
sylib |
|
| 9 |
2
|
adantr |
|
| 10 |
|
topontop |
|
| 11 |
9 10
|
syl |
|
| 12 |
3
|
adantr |
|
| 13 |
|
toponuni |
|
| 14 |
9 13
|
syl |
|
| 15 |
12 14
|
sseqtrd |
|
| 16 |
|
simpr |
|
| 17 |
16
|
elin2d |
|
| 18 |
4
|
adantr |
|
| 19 |
16
|
elin1d |
|
| 20 |
|
eqid |
|
| 21 |
20
|
clsndisj |
|
| 22 |
11 15 17 18 19 21
|
syl32anc |
|
| 23 |
8 22
|
exlimddv |
|
| 24 |
|
simprl2 |
|
| 25 |
|
n0 |
|
| 26 |
24 25
|
sylib |
|
| 27 |
2
|
adantr |
|
| 28 |
27 10
|
syl |
|
| 29 |
3
|
adantr |
|
| 30 |
27 13
|
syl |
|
| 31 |
29 30
|
sseqtrd |
|
| 32 |
|
simpr |
|
| 33 |
32
|
elin2d |
|
| 34 |
5
|
adantr |
|
| 35 |
32
|
elin1d |
|
| 36 |
20
|
clsndisj |
|
| 37 |
28 31 33 34 35 36
|
syl32anc |
|
| 38 |
26 37
|
exlimddv |
|
| 39 |
|
simprl3 |
|
| 40 |
2 10
|
syl |
|
| 41 |
2 13
|
syl |
|
| 42 |
3 41
|
sseqtrd |
|
| 43 |
20
|
sscls |
|
| 44 |
40 42 43
|
syl2anc |
|
| 45 |
44
|
sscond |
|
| 46 |
39 45
|
sstrd |
|
| 47 |
|
ssv |
|
| 48 |
|
ssdif |
|
| 49 |
47 48
|
ax-mp |
|
| 50 |
46 49
|
sstrdi |
|
| 51 |
|
disj2 |
|
| 52 |
50 51
|
sylibr |
|
| 53 |
|
simprr |
|
| 54 |
44 53
|
sstrd |
|
| 55 |
2 3 4 5 23 38 52 54
|
nconnsubb |
|
| 56 |
55
|
expr |
|
| 57 |
1 56
|
mt2d |
|
| 58 |
57
|
ex |
|
| 59 |
58
|
ralrimivva |
|
| 60 |
|
simp1 |
|
| 61 |
13
|
sseq2d |
|
| 62 |
61
|
biimpa |
|
| 63 |
20
|
clsss3 |
|
| 64 |
10 62 63
|
syl2an2r |
|
| 65 |
13
|
adantr |
|
| 66 |
64 65
|
sseqtrrd |
|
| 67 |
66
|
3adant3 |
|
| 68 |
|
connsub |
|
| 69 |
60 67 68
|
syl2anc |
|
| 70 |
59 69
|
mpbird |
|