Metamath Proof Explorer


Theorem clsf

Description: The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015)

Ref Expression
Hypothesis clscld.1 X = J
Assertion clsf J Top cls J : 𝒫 X Clsd J

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 elpwi x 𝒫 X x X
3 1 clsval J Top x X cls J x = y Clsd J | x y
4 fvex cls J x V
5 3 4 eqeltrrdi J Top x X y Clsd J | x y V
6 2 5 sylan2 J Top x 𝒫 X y Clsd J | x y V
7 1 clsfval J Top cls J = x 𝒫 X y Clsd J | x y
8 elpwi y 𝒫 X y X
9 1 clscld J Top y X cls J y Clsd J
10 8 9 sylan2 J Top y 𝒫 X cls J y Clsd J
11 6 7 10 fmpt2d J Top cls J : 𝒫 X Clsd J