Metamath Proof Explorer


Theorem clsidm

Description: The closure operation is idempotent. (Contributed by NM, 2-Oct-2007)

Ref Expression
Hypothesis clscld.1 X = J
Assertion clsidm J Top S X cls J cls J S = cls J S

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 1 clscld J Top S X cls J S Clsd J
3 1 clsss3 J Top S X cls J S X
4 1 iscld3 J Top cls J S X cls J S Clsd J cls J cls J S = cls J S
5 3 4 syldan J Top S X cls J S Clsd J cls J cls J S = cls J S
6 2 5 mpbid J Top S X cls J cls J S = cls J S