Database
BASIC TOPOLOGY
Topology
Closure and interior
clsidm
Next ⟩
ntridm
Metamath Proof Explorer
Ascii
Unicode
Theorem
clsidm
Description:
The closure operation is idempotent.
(Contributed by
NM
, 2-Oct-2007)
Ref
Expression
Hypothesis
clscld.1
⊢
X
=
⋃
J
Assertion
clsidm
⊢
J
∈
Top
∧
S
⊆
X
→
cls
⁡
J
⁡
cls
⁡
J
⁡
S
=
cls
⁡
J
⁡
S
Proof
Step
Hyp
Ref
Expression
1
clscld.1
⊢
X
=
⋃
J
2
1
clscld
⊢
J
∈
Top
∧
S
⊆
X
→
cls
⁡
J
⁡
S
∈
Clsd
⁡
J
3
1
clsss3
⊢
J
∈
Top
∧
S
⊆
X
→
cls
⁡
J
⁡
S
⊆
X
4
1
iscld3
⊢
J
∈
Top
∧
cls
⁡
J
⁡
S
⊆
X
→
cls
⁡
J
⁡
S
∈
Clsd
⁡
J
↔
cls
⁡
J
⁡
cls
⁡
J
⁡
S
=
cls
⁡
J
⁡
S
5
3
4
syldan
⊢
J
∈
Top
∧
S
⊆
X
→
cls
⁡
J
⁡
S
∈
Clsd
⁡
J
↔
cls
⁡
J
⁡
cls
⁡
J
⁡
S
=
cls
⁡
J
⁡
S
6
2
5
mpbid
⊢
J
∈
Top
∧
S
⊆
X
→
cls
⁡
J
⁡
cls
⁡
J
⁡
S
=
cls
⁡
J
⁡
S