Metamath Proof Explorer


Theorem clslp

Description: The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of Munkres p. 97. (Contributed by NM, 26-Feb-2007)

Ref Expression
Hypothesis lpfval.1 X = J
Assertion clslp J Top S X cls J S = S limPt J S

Proof

Step Hyp Ref Expression
1 lpfval.1 X = J
2 1 neindisj J Top S X x cls J S n nei J x n S
3 2 expr J Top S X x cls J S n nei J x n S
4 3 adantr J Top S X x cls J S ¬ x S n nei J x n S
5 difsn ¬ x S S x = S
6 5 ineq2d ¬ x S n S x = n S
7 6 neeq1d ¬ x S n S x n S
8 7 adantl J Top S X x cls J S ¬ x S n S x n S
9 4 8 sylibrd J Top S X x cls J S ¬ x S n nei J x n S x
10 9 ex J Top S X x cls J S ¬ x S n nei J x n S x
11 10 ralrimdv J Top S X x cls J S ¬ x S n nei J x n S x
12 simpll J Top S X x cls J S J Top
13 simplr J Top S X x cls J S S X
14 1 clsss3 J Top S X cls J S X
15 14 sselda J Top S X x cls J S x X
16 1 islp2 J Top S X x X x limPt J S n nei J x n S x
17 12 13 15 16 syl3anc J Top S X x cls J S x limPt J S n nei J x n S x
18 11 17 sylibrd J Top S X x cls J S ¬ x S x limPt J S
19 18 orrd J Top S X x cls J S x S x limPt J S
20 elun x S limPt J S x S x limPt J S
21 19 20 sylibr J Top S X x cls J S x S limPt J S
22 21 ex J Top S X x cls J S x S limPt J S
23 22 ssrdv J Top S X cls J S S limPt J S
24 1 sscls J Top S X S cls J S
25 1 lpsscls J Top S X limPt J S cls J S
26 24 25 unssd J Top S X S limPt J S cls J S
27 23 26 eqssd J Top S X cls J S = S limPt J S