Step |
Hyp |
Ref |
Expression |
1 |
|
clsocv.v |
|
2 |
|
clsocv.o |
|
3 |
|
clsocv.j |
|
4 |
|
cphngp |
|
5 |
|
ngptps |
|
6 |
4 5
|
syl |
|
7 |
6
|
adantr |
|
8 |
1 3
|
istps |
|
9 |
7 8
|
sylib |
|
10 |
|
topontop |
|
11 |
9 10
|
syl |
|
12 |
|
simpr |
|
13 |
|
toponuni |
|
14 |
9 13
|
syl |
|
15 |
12 14
|
sseqtrd |
|
16 |
|
eqid |
|
17 |
16
|
sscls |
|
18 |
11 15 17
|
syl2anc |
|
19 |
2
|
ocv2ss |
|
20 |
18 19
|
syl |
|
21 |
16
|
clsss3 |
|
22 |
11 15 21
|
syl2anc |
|
23 |
22 14
|
sseqtrrd |
|
24 |
23
|
adantr |
|
25 |
1 2
|
ocvss |
|
26 |
25
|
a1i |
|
27 |
26
|
sselda |
|
28 |
|
df-ss |
|
29 |
24 28
|
sylib |
|
30 |
29
|
ineq1d |
|
31 |
|
dfrab3 |
|
32 |
31
|
ineq2i |
|
33 |
|
inass |
|
34 |
32 33
|
eqtr4i |
|
35 |
|
dfrab3 |
|
36 |
30 34 35
|
3eqtr4g |
|
37 |
16
|
clscld |
|
38 |
11 15 37
|
syl2anc |
|
39 |
38
|
adantr |
|
40 |
|
fvex |
|
41 |
|
eqid |
|
42 |
41
|
mptiniseg |
|
43 |
40 42
|
ax-mp |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
|
simpll |
|
47 |
9
|
adantr |
|
48 |
47 47 27
|
cnmptc |
|
49 |
47
|
cnmptid |
|
50 |
3 44 45 46 47 48 49
|
cnmpt1ip |
|
51 |
44
|
cnfldhaus |
|
52 |
|
cphclm |
|
53 |
|
eqid |
|
54 |
53
|
clm0 |
|
55 |
52 54
|
syl |
|
56 |
55
|
ad2antrr |
|
57 |
|
0cn |
|
58 |
56 57
|
eqeltrrdi |
|
59 |
|
unicntop |
|
60 |
59
|
sncld |
|
61 |
51 58 60
|
sylancr |
|
62 |
|
cnclima |
|
63 |
50 61 62
|
syl2anc |
|
64 |
43 63
|
eqeltrrid |
|
65 |
|
incld |
|
66 |
39 64 65
|
syl2anc |
|
67 |
36 66
|
eqeltrrd |
|
68 |
18
|
adantr |
|
69 |
|
eqid |
|
70 |
1 45 53 69 2
|
ocvi |
|
71 |
70
|
ralrimiva |
|
72 |
71
|
adantl |
|
73 |
|
ssrab |
|
74 |
68 72 73
|
sylanbrc |
|
75 |
16
|
clsss2 |
|
76 |
67 74 75
|
syl2anc |
|
77 |
|
ssrab2 |
|
78 |
77
|
a1i |
|
79 |
76 78
|
eqssd |
|
80 |
|
rabid2 |
|
81 |
79 80
|
sylib |
|
82 |
1 45 53 69 2
|
elocv |
|
83 |
24 27 81 82
|
syl3anbrc |
|
84 |
20 83
|
eqelssd |
|