| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clsocv.v |
|
| 2 |
|
clsocv.o |
|
| 3 |
|
clsocv.j |
|
| 4 |
|
cphngp |
|
| 5 |
|
ngptps |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
adantr |
|
| 8 |
1 3
|
istps |
|
| 9 |
7 8
|
sylib |
|
| 10 |
|
topontop |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
simpr |
|
| 13 |
|
toponuni |
|
| 14 |
9 13
|
syl |
|
| 15 |
12 14
|
sseqtrd |
|
| 16 |
|
eqid |
|
| 17 |
16
|
sscls |
|
| 18 |
11 15 17
|
syl2anc |
|
| 19 |
2
|
ocv2ss |
|
| 20 |
18 19
|
syl |
|
| 21 |
16
|
clsss3 |
|
| 22 |
11 15 21
|
syl2anc |
|
| 23 |
22 14
|
sseqtrrd |
|
| 24 |
23
|
adantr |
|
| 25 |
1 2
|
ocvss |
|
| 26 |
25
|
a1i |
|
| 27 |
26
|
sselda |
|
| 28 |
|
dfss2 |
|
| 29 |
24 28
|
sylib |
|
| 30 |
29
|
ineq1d |
|
| 31 |
|
dfrab3 |
|
| 32 |
31
|
ineq2i |
|
| 33 |
|
inass |
|
| 34 |
32 33
|
eqtr4i |
|
| 35 |
|
dfrab3 |
|
| 36 |
30 34 35
|
3eqtr4g |
|
| 37 |
16
|
clscld |
|
| 38 |
11 15 37
|
syl2anc |
|
| 39 |
38
|
adantr |
|
| 40 |
|
fvex |
|
| 41 |
|
eqid |
|
| 42 |
41
|
mptiniseg |
|
| 43 |
40 42
|
ax-mp |
|
| 44 |
|
eqid |
|
| 45 |
|
eqid |
|
| 46 |
|
simpll |
|
| 47 |
9
|
adantr |
|
| 48 |
47 47 27
|
cnmptc |
|
| 49 |
47
|
cnmptid |
|
| 50 |
3 44 45 46 47 48 49
|
cnmpt1ip |
|
| 51 |
44
|
cnfldhaus |
|
| 52 |
|
cphclm |
|
| 53 |
|
eqid |
|
| 54 |
53
|
clm0 |
|
| 55 |
52 54
|
syl |
|
| 56 |
55
|
ad2antrr |
|
| 57 |
|
0cn |
|
| 58 |
56 57
|
eqeltrrdi |
|
| 59 |
|
unicntop |
|
| 60 |
59
|
sncld |
|
| 61 |
51 58 60
|
sylancr |
|
| 62 |
|
cnclima |
|
| 63 |
50 61 62
|
syl2anc |
|
| 64 |
43 63
|
eqeltrrid |
|
| 65 |
|
incld |
|
| 66 |
39 64 65
|
syl2anc |
|
| 67 |
36 66
|
eqeltrrd |
|
| 68 |
18
|
adantr |
|
| 69 |
|
eqid |
|
| 70 |
1 45 53 69 2
|
ocvi |
|
| 71 |
70
|
ralrimiva |
|
| 72 |
71
|
adantl |
|
| 73 |
|
ssrab |
|
| 74 |
68 72 73
|
sylanbrc |
|
| 75 |
16
|
clsss2 |
|
| 76 |
67 74 75
|
syl2anc |
|
| 77 |
|
ssrab2 |
|
| 78 |
77
|
a1i |
|
| 79 |
76 78
|
eqssd |
|
| 80 |
|
rabid2 |
|
| 81 |
79 80
|
sylib |
|
| 82 |
1 45 53 69 2
|
elocv |
|
| 83 |
24 27 81 82
|
syl3anbrc |
|
| 84 |
20 83
|
eqelssd |
|