Metamath Proof Explorer


Theorem clsslem

Description: The closure of a subclass is a subclass of the closure. (Contributed by RP, 16-May-2020)

Ref Expression
Assertion clsslem R S r | R r φ r | S r φ

Proof

Step Hyp Ref Expression
1 sstr2 R S S r R r
2 1 anim1d R S S r φ R r φ
3 2 ss2abdv R S r | S r φ r | R r φ
4 intss r | S r φ r | R r φ r | R r φ r | S r φ
5 3 4 syl R S r | R r φ r | S r φ