Metamath Proof Explorer


Theorem clsss

Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007)

Ref Expression
Hypothesis clscld.1 X = J
Assertion clsss J Top S X T S cls J T cls J S

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 sstr2 T S S x T x
3 2 adantr T S x Clsd J S x T x
4 3 ss2rabdv T S x Clsd J | S x x Clsd J | T x
5 intss x Clsd J | S x x Clsd J | T x x Clsd J | T x x Clsd J | S x
6 4 5 syl T S x Clsd J | T x x Clsd J | S x
7 6 3ad2ant3 J Top S X T S x Clsd J | T x x Clsd J | S x
8 simp1 J Top S X T S J Top
9 sstr2 T S S X T X
10 9 impcom S X T S T X
11 10 3adant1 J Top S X T S T X
12 1 clsval J Top T X cls J T = x Clsd J | T x
13 8 11 12 syl2anc J Top S X T S cls J T = x Clsd J | T x
14 1 clsval J Top S X cls J S = x Clsd J | S x
15 14 3adant3 J Top S X T S cls J S = x Clsd J | S x
16 7 13 15 3sstr4d J Top S X T S cls J T cls J S