Database
BASIC TOPOLOGY
Topology
Closure and interior
clsss
Next ⟩
ntrss
Metamath Proof Explorer
Ascii
Unicode
Theorem
clsss
Description:
Subset relationship for closure.
(Contributed by
NM
, 10-Feb-2007)
Ref
Expression
Hypothesis
clscld.1
⊢
X
=
⋃
J
Assertion
clsss
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
cls
⁡
J
⁡
T
⊆
cls
⁡
J
⁡
S
Proof
Step
Hyp
Ref
Expression
1
clscld.1
⊢
X
=
⋃
J
2
sstr2
⊢
T
⊆
S
→
S
⊆
x
→
T
⊆
x
3
2
adantr
⊢
T
⊆
S
∧
x
∈
Clsd
⁡
J
→
S
⊆
x
→
T
⊆
x
4
3
ss2rabdv
⊢
T
⊆
S
→
x
∈
Clsd
⁡
J
|
S
⊆
x
⊆
x
∈
Clsd
⁡
J
|
T
⊆
x
5
intss
⊢
x
∈
Clsd
⁡
J
|
S
⊆
x
⊆
x
∈
Clsd
⁡
J
|
T
⊆
x
→
⋂
x
∈
Clsd
⁡
J
|
T
⊆
x
⊆
⋂
x
∈
Clsd
⁡
J
|
S
⊆
x
6
4
5
syl
⊢
T
⊆
S
→
⋂
x
∈
Clsd
⁡
J
|
T
⊆
x
⊆
⋂
x
∈
Clsd
⁡
J
|
S
⊆
x
7
6
3ad2ant3
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
⋂
x
∈
Clsd
⁡
J
|
T
⊆
x
⊆
⋂
x
∈
Clsd
⁡
J
|
S
⊆
x
8
simp1
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
J
∈
Top
9
sstr2
⊢
T
⊆
S
→
S
⊆
X
→
T
⊆
X
10
9
impcom
⊢
S
⊆
X
∧
T
⊆
S
→
T
⊆
X
11
10
3adant1
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
T
⊆
X
12
1
clsval
⊢
J
∈
Top
∧
T
⊆
X
→
cls
⁡
J
⁡
T
=
⋂
x
∈
Clsd
⁡
J
|
T
⊆
x
13
8
11
12
syl2anc
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
cls
⁡
J
⁡
T
=
⋂
x
∈
Clsd
⁡
J
|
T
⊆
x
14
1
clsval
⊢
J
∈
Top
∧
S
⊆
X
→
cls
⁡
J
⁡
S
=
⋂
x
∈
Clsd
⁡
J
|
S
⊆
x
15
14
3adant3
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
cls
⁡
J
⁡
S
=
⋂
x
∈
Clsd
⁡
J
|
S
⊆
x
16
7
13
15
3sstr4d
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
cls
⁡
J
⁡
T
⊆
cls
⁡
J
⁡
S