Metamath Proof Explorer


Theorem clsss2

Description: If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007)

Ref Expression
Hypothesis clscld.1 X = J
Assertion clsss2 C Clsd J S C cls J S C

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 cldrcl C Clsd J J Top
3 2 adantr C Clsd J S C J Top
4 1 cldss C Clsd J C X
5 4 adantr C Clsd J S C C X
6 simpr C Clsd J S C S C
7 1 clsss J Top C X S C cls J S cls J C
8 3 5 6 7 syl3anc C Clsd J S C cls J S cls J C
9 cldcls C Clsd J cls J C = C
10 9 adantr C Clsd J S C cls J C = C
11 8 10 sseqtrd C Clsd J S C cls J S C