Metamath Proof Explorer


Theorem clsss3

Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007)

Ref Expression
Hypothesis clscld.1 X = J
Assertion clsss3 J Top S X cls J S X

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 1 clscld J Top S X cls J S Clsd J
3 1 cldss cls J S Clsd J cls J S X
4 2 3 syl J Top S X cls J S X