Metamath Proof Explorer


Theorem clssubg

Description: The closure of a subgroup in a topological group is a subgroup. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis subgntr.h J = TopOpen G
Assertion clssubg G TopGrp S SubGrp G cls J S SubGrp G

Proof

Step Hyp Ref Expression
1 subgntr.h J = TopOpen G
2 eqid Base G = Base G
3 1 2 tgptopon G TopGrp J TopOn Base G
4 3 adantr G TopGrp S SubGrp G J TopOn Base G
5 topontop J TopOn Base G J Top
6 4 5 syl G TopGrp S SubGrp G J Top
7 2 subgss S SubGrp G S Base G
8 7 adantl G TopGrp S SubGrp G S Base G
9 toponuni J TopOn Base G Base G = J
10 4 9 syl G TopGrp S SubGrp G Base G = J
11 8 10 sseqtrd G TopGrp S SubGrp G S J
12 eqid J = J
13 12 clsss3 J Top S J cls J S J
14 6 11 13 syl2anc G TopGrp S SubGrp G cls J S J
15 14 10 sseqtrrd G TopGrp S SubGrp G cls J S Base G
16 12 sscls J Top S J S cls J S
17 6 11 16 syl2anc G TopGrp S SubGrp G S cls J S
18 eqid 0 G = 0 G
19 18 subg0cl S SubGrp G 0 G S
20 19 adantl G TopGrp S SubGrp G 0 G S
21 20 ne0d G TopGrp S SubGrp G S
22 ssn0 S cls J S S cls J S
23 17 21 22 syl2anc G TopGrp S SubGrp G cls J S
24 df-ov x - G y = - G x y
25 opelxpi x cls J S y cls J S x y cls J S × cls J S
26 txcls J TopOn Base G J TopOn Base G S Base G S Base G cls J × t J S × S = cls J S × cls J S
27 4 4 8 8 26 syl22anc G TopGrp S SubGrp G cls J × t J S × S = cls J S × cls J S
28 txtopon J TopOn Base G J TopOn Base G J × t J TopOn Base G × Base G
29 4 4 28 syl2anc G TopGrp S SubGrp G J × t J TopOn Base G × Base G
30 topontop J × t J TopOn Base G × Base G J × t J Top
31 29 30 syl G TopGrp S SubGrp G J × t J Top
32 cnvimass - G -1 S dom - G
33 tgpgrp G TopGrp G Grp
34 33 adantr G TopGrp S SubGrp G G Grp
35 eqid - G = - G
36 2 35 grpsubf G Grp - G : Base G × Base G Base G
37 34 36 syl G TopGrp S SubGrp G - G : Base G × Base G Base G
38 32 37 fssdm G TopGrp S SubGrp G - G -1 S Base G × Base G
39 toponuni J × t J TopOn Base G × Base G Base G × Base G = J × t J
40 29 39 syl G TopGrp S SubGrp G Base G × Base G = J × t J
41 38 40 sseqtrd G TopGrp S SubGrp G - G -1 S J × t J
42 35 subgsubcl S SubGrp G x S y S x - G y S
43 42 3expb S SubGrp G x S y S x - G y S
44 43 ralrimivva S SubGrp G x S y S x - G y S
45 fveq2 z = x y - G z = - G x y
46 45 24 eqtr4di z = x y - G z = x - G y
47 46 eleq1d z = x y - G z S x - G y S
48 47 ralxp z S × S - G z S x S y S x - G y S
49 44 48 sylibr S SubGrp G z S × S - G z S
50 49 adantl G TopGrp S SubGrp G z S × S - G z S
51 37 ffund G TopGrp S SubGrp G Fun - G
52 xpss12 S Base G S Base G S × S Base G × Base G
53 8 8 52 syl2anc G TopGrp S SubGrp G S × S Base G × Base G
54 37 fdmd G TopGrp S SubGrp G dom - G = Base G × Base G
55 53 54 sseqtrrd G TopGrp S SubGrp G S × S dom - G
56 funimass5 Fun - G S × S dom - G S × S - G -1 S z S × S - G z S
57 51 55 56 syl2anc G TopGrp S SubGrp G S × S - G -1 S z S × S - G z S
58 50 57 mpbird G TopGrp S SubGrp G S × S - G -1 S
59 eqid J × t J = J × t J
60 59 clsss J × t J Top - G -1 S J × t J S × S - G -1 S cls J × t J S × S cls J × t J - G -1 S
61 31 41 58 60 syl3anc G TopGrp S SubGrp G cls J × t J S × S cls J × t J - G -1 S
62 1 35 tgpsubcn G TopGrp - G J × t J Cn J
63 62 adantr G TopGrp S SubGrp G - G J × t J Cn J
64 12 cncls2i - G J × t J Cn J S J cls J × t J - G -1 S - G -1 cls J S
65 63 11 64 syl2anc G TopGrp S SubGrp G cls J × t J - G -1 S - G -1 cls J S
66 61 65 sstrd G TopGrp S SubGrp G cls J × t J S × S - G -1 cls J S
67 27 66 eqsstrrd G TopGrp S SubGrp G cls J S × cls J S - G -1 cls J S
68 67 sselda G TopGrp S SubGrp G x y cls J S × cls J S x y - G -1 cls J S
69 25 68 sylan2 G TopGrp S SubGrp G x cls J S y cls J S x y - G -1 cls J S
70 33 ad2antrr G TopGrp S SubGrp G x cls J S y cls J S G Grp
71 ffn - G : Base G × Base G Base G - G Fn Base G × Base G
72 elpreima - G Fn Base G × Base G x y - G -1 cls J S x y Base G × Base G - G x y cls J S
73 70 36 71 72 4syl G TopGrp S SubGrp G x cls J S y cls J S x y - G -1 cls J S x y Base G × Base G - G x y cls J S
74 69 73 mpbid G TopGrp S SubGrp G x cls J S y cls J S x y Base G × Base G - G x y cls J S
75 74 simprd G TopGrp S SubGrp G x cls J S y cls J S - G x y cls J S
76 24 75 eqeltrid G TopGrp S SubGrp G x cls J S y cls J S x - G y cls J S
77 76 ralrimivva G TopGrp S SubGrp G x cls J S y cls J S x - G y cls J S
78 2 35 issubg4 G Grp cls J S SubGrp G cls J S Base G cls J S x cls J S y cls J S x - G y cls J S
79 34 78 syl G TopGrp S SubGrp G cls J S SubGrp G cls J S Base G cls J S x cls J S y cls J S x - G y cls J S
80 15 23 77 79 mpbir3and G TopGrp S SubGrp G cls J S SubGrp G