Step |
Hyp |
Ref |
Expression |
1 |
|
subgntr.h |
|
2 |
|
eqid |
|
3 |
1 2
|
tgptopon |
|
4 |
3
|
adantr |
|
5 |
|
topontop |
|
6 |
4 5
|
syl |
|
7 |
2
|
subgss |
|
8 |
7
|
adantl |
|
9 |
|
toponuni |
|
10 |
4 9
|
syl |
|
11 |
8 10
|
sseqtrd |
|
12 |
|
eqid |
|
13 |
12
|
clsss3 |
|
14 |
6 11 13
|
syl2anc |
|
15 |
14 10
|
sseqtrrd |
|
16 |
12
|
sscls |
|
17 |
6 11 16
|
syl2anc |
|
18 |
|
eqid |
|
19 |
18
|
subg0cl |
|
20 |
19
|
adantl |
|
21 |
20
|
ne0d |
|
22 |
|
ssn0 |
|
23 |
17 21 22
|
syl2anc |
|
24 |
|
df-ov |
|
25 |
|
opelxpi |
|
26 |
|
txcls |
|
27 |
4 4 8 8 26
|
syl22anc |
|
28 |
|
txtopon |
|
29 |
4 4 28
|
syl2anc |
|
30 |
|
topontop |
|
31 |
29 30
|
syl |
|
32 |
|
cnvimass |
|
33 |
|
tgpgrp |
|
34 |
33
|
adantr |
|
35 |
|
eqid |
|
36 |
2 35
|
grpsubf |
|
37 |
34 36
|
syl |
|
38 |
32 37
|
fssdm |
|
39 |
|
toponuni |
|
40 |
29 39
|
syl |
|
41 |
38 40
|
sseqtrd |
|
42 |
35
|
subgsubcl |
|
43 |
42
|
3expb |
|
44 |
43
|
ralrimivva |
|
45 |
|
fveq2 |
|
46 |
45 24
|
eqtr4di |
|
47 |
46
|
eleq1d |
|
48 |
47
|
ralxp |
|
49 |
44 48
|
sylibr |
|
50 |
49
|
adantl |
|
51 |
37
|
ffund |
|
52 |
|
xpss12 |
|
53 |
8 8 52
|
syl2anc |
|
54 |
37
|
fdmd |
|
55 |
53 54
|
sseqtrrd |
|
56 |
|
funimass5 |
|
57 |
51 55 56
|
syl2anc |
|
58 |
50 57
|
mpbird |
|
59 |
|
eqid |
|
60 |
59
|
clsss |
|
61 |
31 41 58 60
|
syl3anc |
|
62 |
1 35
|
tgpsubcn |
|
63 |
62
|
adantr |
|
64 |
12
|
cncls2i |
|
65 |
63 11 64
|
syl2anc |
|
66 |
61 65
|
sstrd |
|
67 |
27 66
|
eqsstrrd |
|
68 |
67
|
sselda |
|
69 |
25 68
|
sylan2 |
|
70 |
33
|
ad2antrr |
|
71 |
|
ffn |
|
72 |
|
elpreima |
|
73 |
70 36 71 72
|
4syl |
|
74 |
69 73
|
mpbid |
|
75 |
74
|
simprd |
|
76 |
24 75
|
eqeltrid |
|
77 |
76
|
ralrimivva |
|
78 |
2 35
|
issubg4 |
|
79 |
34 78
|
syl |
|
80 |
15 23 77 79
|
mpbir3and |
|