Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
|
2 |
|
df-rab |
|
3 |
1
|
cldopn |
|
4 |
3
|
ad2antrl |
|
5 |
|
sscon |
|
6 |
5
|
ad2antll |
|
7 |
1
|
topopn |
|
8 |
|
difexg |
|
9 |
|
elpwg |
|
10 |
7 8 9
|
3syl |
|
11 |
10
|
ad2antrr |
|
12 |
6 11
|
mpbird |
|
13 |
4 12
|
elind |
|
14 |
1
|
cldss |
|
15 |
14
|
ad2antrl |
|
16 |
|
dfss4 |
|
17 |
15 16
|
sylib |
|
18 |
17
|
eqcomd |
|
19 |
|
difeq2 |
|
20 |
19
|
rspceeqv |
|
21 |
13 18 20
|
syl2anc |
|
22 |
21
|
ex |
|
23 |
|
simpl |
|
24 |
|
elinel1 |
|
25 |
1
|
opncld |
|
26 |
23 24 25
|
syl2an |
|
27 |
|
elinel2 |
|
28 |
27
|
adantl |
|
29 |
28
|
elpwid |
|
30 |
29
|
difss2d |
|
31 |
|
simplr |
|
32 |
|
ssconb |
|
33 |
30 31 32
|
syl2anc |
|
34 |
29 33
|
mpbid |
|
35 |
26 34
|
jca |
|
36 |
|
eleq1 |
|
37 |
|
sseq2 |
|
38 |
36 37
|
anbi12d |
|
39 |
35 38
|
syl5ibrcom |
|
40 |
39
|
rexlimdva |
|
41 |
22 40
|
impbid |
|
42 |
41
|
abbidv |
|
43 |
2 42
|
syl5eq |
|
44 |
43
|
inteqd |
|
45 |
|
difexg |
|
46 |
45
|
ralrimivw |
|
47 |
|
dfiin2g |
|
48 |
7 46 47
|
3syl |
|
49 |
48
|
adantr |
|
50 |
44 49
|
eqtr4d |
|
51 |
1
|
clsval |
|
52 |
|
uniiun |
|
53 |
52
|
difeq2i |
|
54 |
53
|
a1i |
|
55 |
|
0opn |
|
56 |
55
|
adantr |
|
57 |
|
0elpw |
|
58 |
57
|
a1i |
|
59 |
56 58
|
elind |
|
60 |
|
ne0i |
|
61 |
|
iindif2 |
|
62 |
59 60 61
|
3syl |
|
63 |
54 62
|
eqtr4d |
|
64 |
50 51 63
|
3eqtr4d |
|
65 |
|
difssd |
|
66 |
1
|
ntrval |
|
67 |
65 66
|
sylan2 |
|
68 |
67
|
difeq2d |
|
69 |
64 68
|
eqtr4d |
|