| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clscld.1 |
|
| 2 |
|
df-rab |
|
| 3 |
1
|
cldopn |
|
| 4 |
3
|
ad2antrl |
|
| 5 |
|
sscon |
|
| 6 |
5
|
ad2antll |
|
| 7 |
1
|
topopn |
|
| 8 |
|
difexg |
|
| 9 |
|
elpwg |
|
| 10 |
7 8 9
|
3syl |
|
| 11 |
10
|
ad2antrr |
|
| 12 |
6 11
|
mpbird |
|
| 13 |
4 12
|
elind |
|
| 14 |
1
|
cldss |
|
| 15 |
14
|
ad2antrl |
|
| 16 |
|
dfss4 |
|
| 17 |
15 16
|
sylib |
|
| 18 |
17
|
eqcomd |
|
| 19 |
|
difeq2 |
|
| 20 |
19
|
rspceeqv |
|
| 21 |
13 18 20
|
syl2anc |
|
| 22 |
21
|
ex |
|
| 23 |
|
simpl |
|
| 24 |
|
elinel1 |
|
| 25 |
1
|
opncld |
|
| 26 |
23 24 25
|
syl2an |
|
| 27 |
|
elinel2 |
|
| 28 |
27
|
adantl |
|
| 29 |
28
|
elpwid |
|
| 30 |
29
|
difss2d |
|
| 31 |
|
simplr |
|
| 32 |
|
ssconb |
|
| 33 |
30 31 32
|
syl2anc |
|
| 34 |
29 33
|
mpbid |
|
| 35 |
26 34
|
jca |
|
| 36 |
|
eleq1 |
|
| 37 |
|
sseq2 |
|
| 38 |
36 37
|
anbi12d |
|
| 39 |
35 38
|
syl5ibrcom |
|
| 40 |
39
|
rexlimdva |
|
| 41 |
22 40
|
impbid |
|
| 42 |
41
|
abbidv |
|
| 43 |
2 42
|
eqtrid |
|
| 44 |
43
|
inteqd |
|
| 45 |
|
difexg |
|
| 46 |
45
|
ralrimivw |
|
| 47 |
|
dfiin2g |
|
| 48 |
7 46 47
|
3syl |
|
| 49 |
48
|
adantr |
|
| 50 |
44 49
|
eqtr4d |
|
| 51 |
1
|
clsval |
|
| 52 |
|
uniiun |
|
| 53 |
52
|
difeq2i |
|
| 54 |
53
|
a1i |
|
| 55 |
|
0opn |
|
| 56 |
55
|
adantr |
|
| 57 |
|
0elpw |
|
| 58 |
57
|
a1i |
|
| 59 |
56 58
|
elind |
|
| 60 |
|
ne0i |
|
| 61 |
|
iindif2 |
|
| 62 |
59 60 61
|
3syl |
|
| 63 |
54 62
|
eqtr4d |
|
| 64 |
50 51 63
|
3eqtr4d |
|
| 65 |
|
difssd |
|
| 66 |
1
|
ntrval |
|
| 67 |
65 66
|
sylan2 |
|
| 68 |
67
|
difeq2d |
|
| 69 |
64 68
|
eqtr4d |
|