Metamath Proof Explorer


Theorem clwlkclwwlk2

Description: A closed walk corresponds to a closed walk as word in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 24-Apr-2021) (Proof shortened by AV, 2-Nov-2022)

Ref Expression
Hypotheses clwlkclwwlk.v V = Vtx G
clwlkclwwlk.e E = iEdg G
Assertion clwlkclwwlk2 G USHGraph P Word V 1 P f f ClWalks G P ++ ⟨“ P 0 ”⟩ P ClWWalks G

Proof

Step Hyp Ref Expression
1 clwlkclwwlk.v V = Vtx G
2 clwlkclwwlk.e E = iEdg G
3 simp1 G USHGraph P Word V 1 P G USHGraph
4 wrdsymb1 P Word V 1 P P 0 V
5 4 s1cld P Word V 1 P ⟨“ P 0 ”⟩ Word V
6 ccatcl P Word V ⟨“ P 0 ”⟩ Word V P ++ ⟨“ P 0 ”⟩ Word V
7 5 6 syldan P Word V 1 P P ++ ⟨“ P 0 ”⟩ Word V
8 7 3adant1 G USHGraph P Word V 1 P P ++ ⟨“ P 0 ”⟩ Word V
9 lencl P Word V P 0
10 1e2m1 1 = 2 1
11 10 breq1i 1 P 2 1 P
12 2re 2
13 12 a1i P 0 2
14 1red P 0 1
15 nn0re P 0 P
16 13 14 15 lesubaddd P 0 2 1 P 2 P + 1
17 11 16 syl5bb P 0 1 P 2 P + 1
18 9 17 syl P Word V 1 P 2 P + 1
19 18 biimpa P Word V 1 P 2 P + 1
20 s1len ⟨“ P 0 ”⟩ = 1
21 20 oveq2i P + ⟨“ P 0 ”⟩ = P + 1
22 19 21 breqtrrdi P Word V 1 P 2 P + ⟨“ P 0 ”⟩
23 ccatlen P Word V ⟨“ P 0 ”⟩ Word V P ++ ⟨“ P 0 ”⟩ = P + ⟨“ P 0 ”⟩
24 5 23 syldan P Word V 1 P P ++ ⟨“ P 0 ”⟩ = P + ⟨“ P 0 ”⟩
25 22 24 breqtrrd P Word V 1 P 2 P ++ ⟨“ P 0 ”⟩
26 25 3adant1 G USHGraph P Word V 1 P 2 P ++ ⟨“ P 0 ”⟩
27 1 2 clwlkclwwlk G USHGraph P ++ ⟨“ P 0 ”⟩ Word V 2 P ++ ⟨“ P 0 ”⟩ f f ClWalks G P ++ ⟨“ P 0 ”⟩ lastS P ++ ⟨“ P 0 ”⟩ = P ++ ⟨“ P 0 ”⟩ 0 P ++ ⟨“ P 0 ”⟩ prefix P ++ ⟨“ P 0 ”⟩ 1 ClWWalks G
28 3 8 26 27 syl3anc G USHGraph P Word V 1 P f f ClWalks G P ++ ⟨“ P 0 ”⟩ lastS P ++ ⟨“ P 0 ”⟩ = P ++ ⟨“ P 0 ”⟩ 0 P ++ ⟨“ P 0 ”⟩ prefix P ++ ⟨“ P 0 ”⟩ 1 ClWWalks G
29 wrdlenccats1lenm1 P Word V P ++ ⟨“ P 0 ”⟩ 1 = P
30 29 oveq2d P Word V P ++ ⟨“ P 0 ”⟩ prefix P ++ ⟨“ P 0 ”⟩ 1 = P ++ ⟨“ P 0 ”⟩ prefix P
31 30 adantr P Word V 1 P P ++ ⟨“ P 0 ”⟩ prefix P ++ ⟨“ P 0 ”⟩ 1 = P ++ ⟨“ P 0 ”⟩ prefix P
32 simpl P Word V 1 P P Word V
33 eqidd P Word V 1 P P = P
34 pfxccatid P Word V ⟨“ P 0 ”⟩ Word V P = P P ++ ⟨“ P 0 ”⟩ prefix P = P
35 32 5 33 34 syl3anc P Word V 1 P P ++ ⟨“ P 0 ”⟩ prefix P = P
36 31 35 eqtr2d P Word V 1 P P = P ++ ⟨“ P 0 ”⟩ prefix P ++ ⟨“ P 0 ”⟩ 1
37 36 eleq1d P Word V 1 P P ClWWalks G P ++ ⟨“ P 0 ”⟩ prefix P ++ ⟨“ P 0 ”⟩ 1 ClWWalks G
38 lswccats1fst P Word V 1 P lastS P ++ ⟨“ P 0 ”⟩ = P ++ ⟨“ P 0 ”⟩ 0
39 38 biantrurd P Word V 1 P P ++ ⟨“ P 0 ”⟩ prefix P ++ ⟨“ P 0 ”⟩ 1 ClWWalks G lastS P ++ ⟨“ P 0 ”⟩ = P ++ ⟨“ P 0 ”⟩ 0 P ++ ⟨“ P 0 ”⟩ prefix P ++ ⟨“ P 0 ”⟩ 1 ClWWalks G
40 37 39 bitr2d P Word V 1 P lastS P ++ ⟨“ P 0 ”⟩ = P ++ ⟨“ P 0 ”⟩ 0 P ++ ⟨“ P 0 ”⟩ prefix P ++ ⟨“ P 0 ”⟩ 1 ClWWalks G P ClWWalks G
41 40 3adant1 G USHGraph P Word V 1 P lastS P ++ ⟨“ P 0 ”⟩ = P ++ ⟨“ P 0 ”⟩ 0 P ++ ⟨“ P 0 ”⟩ prefix P ++ ⟨“ P 0 ”⟩ 1 ClWWalks G P ClWWalks G
42 28 41 bitrd G USHGraph P Word V 1 P f f ClWalks G P ++ ⟨“ P 0 ”⟩ P ClWWalks G