Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlk.v |
|
2 |
|
clwlkclwwlk.e |
|
3 |
|
simp1 |
|
4 |
|
wrdsymb1 |
|
5 |
4
|
s1cld |
|
6 |
|
ccatcl |
|
7 |
5 6
|
syldan |
|
8 |
7
|
3adant1 |
|
9 |
|
lencl |
|
10 |
|
1e2m1 |
|
11 |
10
|
breq1i |
|
12 |
|
2re |
|
13 |
12
|
a1i |
|
14 |
|
1red |
|
15 |
|
nn0re |
|
16 |
13 14 15
|
lesubaddd |
|
17 |
11 16
|
syl5bb |
|
18 |
9 17
|
syl |
|
19 |
18
|
biimpa |
|
20 |
|
s1len |
|
21 |
20
|
oveq2i |
|
22 |
19 21
|
breqtrrdi |
|
23 |
|
ccatlen |
|
24 |
5 23
|
syldan |
|
25 |
22 24
|
breqtrrd |
|
26 |
25
|
3adant1 |
|
27 |
1 2
|
clwlkclwwlk |
|
28 |
3 8 26 27
|
syl3anc |
|
29 |
|
wrdlenccats1lenm1 |
|
30 |
29
|
oveq2d |
|
31 |
30
|
adantr |
|
32 |
|
simpl |
|
33 |
|
eqidd |
|
34 |
|
pfxccatid |
|
35 |
32 5 33 34
|
syl3anc |
|
36 |
31 35
|
eqtr2d |
|
37 |
36
|
eleq1d |
|
38 |
|
lswccats1fst |
|
39 |
38
|
biantrurd |
|
40 |
37 39
|
bitr2d |
|
41 |
40
|
3adant1 |
|
42 |
28 41
|
bitrd |
|