| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlkclwwlk.v |
|
| 2 |
|
clwlkclwwlk.e |
|
| 3 |
|
simp1 |
|
| 4 |
|
wrdsymb1 |
|
| 5 |
4
|
s1cld |
|
| 6 |
|
ccatcl |
|
| 7 |
5 6
|
syldan |
|
| 8 |
7
|
3adant1 |
|
| 9 |
|
lencl |
|
| 10 |
|
1e2m1 |
|
| 11 |
10
|
breq1i |
|
| 12 |
|
2re |
|
| 13 |
12
|
a1i |
|
| 14 |
|
1red |
|
| 15 |
|
nn0re |
|
| 16 |
13 14 15
|
lesubaddd |
|
| 17 |
11 16
|
bitrid |
|
| 18 |
9 17
|
syl |
|
| 19 |
18
|
biimpa |
|
| 20 |
|
s1len |
|
| 21 |
20
|
oveq2i |
|
| 22 |
19 21
|
breqtrrdi |
|
| 23 |
|
ccatlen |
|
| 24 |
5 23
|
syldan |
|
| 25 |
22 24
|
breqtrrd |
|
| 26 |
25
|
3adant1 |
|
| 27 |
1 2
|
clwlkclwwlk |
|
| 28 |
3 8 26 27
|
syl3anc |
|
| 29 |
|
wrdlenccats1lenm1 |
|
| 30 |
29
|
oveq2d |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simpl |
|
| 33 |
|
eqidd |
|
| 34 |
|
pfxccatid |
|
| 35 |
32 5 33 34
|
syl3anc |
|
| 36 |
31 35
|
eqtr2d |
|
| 37 |
36
|
eleq1d |
|
| 38 |
|
lswccats1fst |
|
| 39 |
38
|
biantrurd |
|
| 40 |
37 39
|
bitr2d |
|
| 41 |
40
|
3adant1 |
|
| 42 |
28 41
|
bitrd |
|