Metamath Proof Explorer


Theorem clwlkclwwlkf

Description: F is a function from the nonempty closed walks into the closed walks as word in a simple pseudograph. (Contributed by AV, 23-May-2022) (Revised by AV, 29-Oct-2022)

Ref Expression
Hypotheses clwlkclwwlkf.c C = w ClWalks G | 1 1 st w
clwlkclwwlkf.f F = c C 2 nd c prefix 2 nd c 1
Assertion clwlkclwwlkf G USHGraph F : C ClWWalks G

Proof

Step Hyp Ref Expression
1 clwlkclwwlkf.c C = w ClWalks G | 1 1 st w
2 clwlkclwwlkf.f F = c C 2 nd c prefix 2 nd c 1
3 eqid 1 st c = 1 st c
4 eqid 2 nd c = 2 nd c
5 1 3 4 clwlkclwwlkflem c C 1 st c Walks G 2 nd c 2 nd c 0 = 2 nd c 1 st c 1 st c
6 isclwlk 1 st c ClWalks G 2 nd c 1 st c Walks G 2 nd c 2 nd c 0 = 2 nd c 1 st c
7 fvex 1 st c V
8 breq1 f = 1 st c f ClWalks G 2 nd c 1 st c ClWalks G 2 nd c
9 7 8 spcev 1 st c ClWalks G 2 nd c f f ClWalks G 2 nd c
10 6 9 sylbir 1 st c Walks G 2 nd c 2 nd c 0 = 2 nd c 1 st c f f ClWalks G 2 nd c
11 10 3adant3 1 st c Walks G 2 nd c 2 nd c 0 = 2 nd c 1 st c 1 st c f f ClWalks G 2 nd c
12 11 adantl G USHGraph 1 st c Walks G 2 nd c 2 nd c 0 = 2 nd c 1 st c 1 st c f f ClWalks G 2 nd c
13 simpl G USHGraph 1 st c Walks G 2 nd c 2 nd c 0 = 2 nd c 1 st c 1 st c G USHGraph
14 eqid Vtx G = Vtx G
15 14 wlkpwrd 1 st c Walks G 2 nd c 2 nd c Word Vtx G
16 15 3ad2ant1 1 st c Walks G 2 nd c 2 nd c 0 = 2 nd c 1 st c 1 st c 2 nd c Word Vtx G
17 16 adantl G USHGraph 1 st c Walks G 2 nd c 2 nd c 0 = 2 nd c 1 st c 1 st c 2 nd c Word Vtx G
18 elnnnn0c 1 st c 1 st c 0 1 1 st c
19 nn0re 1 st c 0 1 st c
20 1e2m1 1 = 2 1
21 20 breq1i 1 1 st c 2 1 1 st c
22 21 biimpi 1 1 st c 2 1 1 st c
23 2re 2
24 1re 1
25 lesubadd 2 1 1 st c 2 1 1 st c 2 1 st c + 1
26 23 24 25 mp3an12 1 st c 2 1 1 st c 2 1 st c + 1
27 22 26 syl5ib 1 st c 1 1 st c 2 1 st c + 1
28 19 27 syl 1 st c 0 1 1 st c 2 1 st c + 1
29 28 adantl 1 st c Walks G 2 nd c 1 st c 0 1 1 st c 2 1 st c + 1
30 wlklenvp1 1 st c Walks G 2 nd c 2 nd c = 1 st c + 1
31 30 adantr 1 st c Walks G 2 nd c 1 st c 0 2 nd c = 1 st c + 1
32 31 breq2d 1 st c Walks G 2 nd c 1 st c 0 2 2 nd c 2 1 st c + 1
33 29 32 sylibrd 1 st c Walks G 2 nd c 1 st c 0 1 1 st c 2 2 nd c
34 33 expimpd 1 st c Walks G 2 nd c 1 st c 0 1 1 st c 2 2 nd c
35 18 34 syl5bi 1 st c Walks G 2 nd c 1 st c 2 2 nd c
36 35 a1d 1 st c Walks G 2 nd c 2 nd c 0 = 2 nd c 1 st c 1 st c 2 2 nd c
37 36 3imp 1 st c Walks G 2 nd c 2 nd c 0 = 2 nd c 1 st c 1 st c 2 2 nd c
38 37 adantl G USHGraph 1 st c Walks G 2 nd c 2 nd c 0 = 2 nd c 1 st c 1 st c 2 2 nd c
39 eqid iEdg G = iEdg G
40 14 39 clwlkclwwlk G USHGraph 2 nd c Word Vtx G 2 2 nd c f f ClWalks G 2 nd c lastS 2 nd c = 2 nd c 0 2 nd c prefix 2 nd c 1 ClWWalks G
41 13 17 38 40 syl3anc G USHGraph 1 st c Walks G 2 nd c 2 nd c 0 = 2 nd c 1 st c 1 st c f f ClWalks G 2 nd c lastS 2 nd c = 2 nd c 0 2 nd c prefix 2 nd c 1 ClWWalks G
42 12 41 mpbid G USHGraph 1 st c Walks G 2 nd c 2 nd c 0 = 2 nd c 1 st c 1 st c lastS 2 nd c = 2 nd c 0 2 nd c prefix 2 nd c 1 ClWWalks G
43 5 42 sylan2 G USHGraph c C lastS 2 nd c = 2 nd c 0 2 nd c prefix 2 nd c 1 ClWWalks G
44 43 simprd G USHGraph c C 2 nd c prefix 2 nd c 1 ClWWalks G
45 44 2 fmptd G USHGraph F : C ClWWalks G