Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlkf.c |
|
2 |
|
clwlkclwwlkf.f |
|
3 |
1 2
|
clwlkclwwlkf |
|
4 |
|
fveq2 |
|
5 |
|
2fveq3 |
|
6 |
5
|
oveq1d |
|
7 |
4 6
|
oveq12d |
|
8 |
|
id |
|
9 |
|
ovexd |
|
10 |
2 7 8 9
|
fvmptd3 |
|
11 |
|
fveq2 |
|
12 |
|
2fveq3 |
|
13 |
12
|
oveq1d |
|
14 |
11 13
|
oveq12d |
|
15 |
|
id |
|
16 |
|
ovexd |
|
17 |
2 14 15 16
|
fvmptd3 |
|
18 |
10 17
|
eqeqan12d |
|
19 |
18
|
adantl |
|
20 |
|
simplrl |
|
21 |
|
simplrr |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
1 22 23
|
clwlkclwwlkflem |
|
25 |
|
wlklenvm1 |
|
26 |
25
|
eqcomd |
|
27 |
26
|
3ad2ant1 |
|
28 |
24 27
|
syl |
|
29 |
28
|
adantr |
|
30 |
29
|
oveq2d |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
1 31 32
|
clwlkclwwlkflem |
|
34 |
|
wlklenvm1 |
|
35 |
34
|
eqcomd |
|
36 |
35
|
3ad2ant1 |
|
37 |
33 36
|
syl |
|
38 |
37
|
adantl |
|
39 |
38
|
oveq2d |
|
40 |
30 39
|
eqeq12d |
|
41 |
40
|
adantl |
|
42 |
41
|
biimpa |
|
43 |
20 21 42
|
3jca |
|
44 |
1 22 23 31 32
|
clwlkclwwlkf1lem2 |
|
45 |
|
simpl |
|
46 |
43 44 45
|
3syl |
|
47 |
1 22 23 31 32
|
clwlkclwwlkf1lem3 |
|
48 |
43 47
|
syl |
|
49 |
|
simpl |
|
50 |
|
wlkcpr |
|
51 |
50
|
biimpri |
|
52 |
51
|
3ad2ant1 |
|
53 |
24 52
|
syl |
|
54 |
|
wlkcpr |
|
55 |
54
|
biimpri |
|
56 |
55
|
3ad2ant1 |
|
57 |
33 56
|
syl |
|
58 |
53 57
|
anim12i |
|
59 |
58
|
adantl |
|
60 |
|
eqidd |
|
61 |
49 59 60
|
3jca |
|
62 |
61
|
adantr |
|
63 |
|
uspgr2wlkeq |
|
64 |
62 63
|
syl |
|
65 |
46 48 64
|
mpbir2and |
|
66 |
65
|
ex |
|
67 |
19 66
|
sylbid |
|
68 |
67
|
ralrimivva |
|
69 |
|
dff13 |
|
70 |
3 68 69
|
sylanbrc |
|