Metamath Proof Explorer


Theorem clwlkclwwlkf1

Description: F is a one-to-one function from the nonempty closed walks into the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018) (Revised by AV, 3-May-2021) (Revised by AV, 29-Oct-2022)

Ref Expression
Hypotheses clwlkclwwlkf.c C = w ClWalks G | 1 1 st w
clwlkclwwlkf.f F = c C 2 nd c prefix 2 nd c 1
Assertion clwlkclwwlkf1 G USHGraph F : C 1-1 ClWWalks G

Proof

Step Hyp Ref Expression
1 clwlkclwwlkf.c C = w ClWalks G | 1 1 st w
2 clwlkclwwlkf.f F = c C 2 nd c prefix 2 nd c 1
3 1 2 clwlkclwwlkf G USHGraph F : C ClWWalks G
4 fveq2 c = x 2 nd c = 2 nd x
5 2fveq3 c = x 2 nd c = 2 nd x
6 5 oveq1d c = x 2 nd c 1 = 2 nd x 1
7 4 6 oveq12d c = x 2 nd c prefix 2 nd c 1 = 2 nd x prefix 2 nd x 1
8 id x C x C
9 ovexd x C 2 nd x prefix 2 nd x 1 V
10 2 7 8 9 fvmptd3 x C F x = 2 nd x prefix 2 nd x 1
11 fveq2 c = y 2 nd c = 2 nd y
12 2fveq3 c = y 2 nd c = 2 nd y
13 12 oveq1d c = y 2 nd c 1 = 2 nd y 1
14 11 13 oveq12d c = y 2 nd c prefix 2 nd c 1 = 2 nd y prefix 2 nd y 1
15 id y C y C
16 ovexd y C 2 nd y prefix 2 nd y 1 V
17 2 14 15 16 fvmptd3 y C F y = 2 nd y prefix 2 nd y 1
18 10 17 eqeqan12d x C y C F x = F y 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1
19 18 adantl G USHGraph x C y C F x = F y 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1
20 simplrl G USHGraph x C y C 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1 x C
21 simplrr G USHGraph x C y C 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1 y C
22 eqid 1 st x = 1 st x
23 eqid 2 nd x = 2 nd x
24 1 22 23 clwlkclwwlkflem x C 1 st x Walks G 2 nd x 2 nd x 0 = 2 nd x 1 st x 1 st x
25 wlklenvm1 1 st x Walks G 2 nd x 1 st x = 2 nd x 1
26 25 eqcomd 1 st x Walks G 2 nd x 2 nd x 1 = 1 st x
27 26 3ad2ant1 1 st x Walks G 2 nd x 2 nd x 0 = 2 nd x 1 st x 1 st x 2 nd x 1 = 1 st x
28 24 27 syl x C 2 nd x 1 = 1 st x
29 28 adantr x C y C 2 nd x 1 = 1 st x
30 29 oveq2d x C y C 2 nd x prefix 2 nd x 1 = 2 nd x prefix 1 st x
31 eqid 1 st y = 1 st y
32 eqid 2 nd y = 2 nd y
33 1 31 32 clwlkclwwlkflem y C 1 st y Walks G 2 nd y 2 nd y 0 = 2 nd y 1 st y 1 st y
34 wlklenvm1 1 st y Walks G 2 nd y 1 st y = 2 nd y 1
35 34 eqcomd 1 st y Walks G 2 nd y 2 nd y 1 = 1 st y
36 35 3ad2ant1 1 st y Walks G 2 nd y 2 nd y 0 = 2 nd y 1 st y 1 st y 2 nd y 1 = 1 st y
37 33 36 syl y C 2 nd y 1 = 1 st y
38 37 adantl x C y C 2 nd y 1 = 1 st y
39 38 oveq2d x C y C 2 nd y prefix 2 nd y 1 = 2 nd y prefix 1 st y
40 30 39 eqeq12d x C y C 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1 2 nd x prefix 1 st x = 2 nd y prefix 1 st y
41 40 adantl G USHGraph x C y C 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1 2 nd x prefix 1 st x = 2 nd y prefix 1 st y
42 41 biimpa G USHGraph x C y C 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1 2 nd x prefix 1 st x = 2 nd y prefix 1 st y
43 20 21 42 3jca G USHGraph x C y C 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1 x C y C 2 nd x prefix 1 st x = 2 nd y prefix 1 st y
44 1 22 23 31 32 clwlkclwwlkf1lem2 x C y C 2 nd x prefix 1 st x = 2 nd y prefix 1 st y 1 st x = 1 st y i 0 ..^ 1 st x 2 nd x i = 2 nd y i
45 simpl 1 st x = 1 st y i 0 ..^ 1 st x 2 nd x i = 2 nd y i 1 st x = 1 st y
46 43 44 45 3syl G USHGraph x C y C 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1 1 st x = 1 st y
47 1 22 23 31 32 clwlkclwwlkf1lem3 x C y C 2 nd x prefix 1 st x = 2 nd y prefix 1 st y i 0 1 st x 2 nd x i = 2 nd y i
48 43 47 syl G USHGraph x C y C 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1 i 0 1 st x 2 nd x i = 2 nd y i
49 simpl G USHGraph x C y C G USHGraph
50 wlkcpr x Walks G 1 st x Walks G 2 nd x
51 50 biimpri 1 st x Walks G 2 nd x x Walks G
52 51 3ad2ant1 1 st x Walks G 2 nd x 2 nd x 0 = 2 nd x 1 st x 1 st x x Walks G
53 24 52 syl x C x Walks G
54 wlkcpr y Walks G 1 st y Walks G 2 nd y
55 54 biimpri 1 st y Walks G 2 nd y y Walks G
56 55 3ad2ant1 1 st y Walks G 2 nd y 2 nd y 0 = 2 nd y 1 st y 1 st y y Walks G
57 33 56 syl y C y Walks G
58 53 57 anim12i x C y C x Walks G y Walks G
59 58 adantl G USHGraph x C y C x Walks G y Walks G
60 eqidd G USHGraph x C y C 1 st x = 1 st x
61 49 59 60 3jca G USHGraph x C y C G USHGraph x Walks G y Walks G 1 st x = 1 st x
62 61 adantr G USHGraph x C y C 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1 G USHGraph x Walks G y Walks G 1 st x = 1 st x
63 uspgr2wlkeq G USHGraph x Walks G y Walks G 1 st x = 1 st x x = y 1 st x = 1 st y i 0 1 st x 2 nd x i = 2 nd y i
64 62 63 syl G USHGraph x C y C 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1 x = y 1 st x = 1 st y i 0 1 st x 2 nd x i = 2 nd y i
65 46 48 64 mpbir2and G USHGraph x C y C 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1 x = y
66 65 ex G USHGraph x C y C 2 nd x prefix 2 nd x 1 = 2 nd y prefix 2 nd y 1 x = y
67 19 66 sylbid G USHGraph x C y C F x = F y x = y
68 67 ralrimivva G USHGraph x C y C F x = F y x = y
69 dff13 F : C 1-1 ClWWalks G F : C ClWWalks G x C y C F x = F y x = y
70 3 68 69 sylanbrc G USHGraph F : C 1-1 ClWWalks G