Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlkf.c |
|
2 |
|
clwlkclwwlkf.a |
|
3 |
|
clwlkclwwlkf.b |
|
4 |
|
clwlkclwwlkf.d |
|
5 |
|
clwlkclwwlkf.e |
|
6 |
1 2 3 4 5
|
clwlkclwwlkf1lem2 |
|
7 |
|
simprr |
|
8 |
1 2 3
|
clwlkclwwlkflem |
|
9 |
1 4 5
|
clwlkclwwlkflem |
|
10 |
|
lbfzo0 |
|
11 |
10
|
biimpri |
|
12 |
11
|
3ad2ant3 |
|
13 |
12
|
adantr |
|
14 |
13
|
adantr |
|
15 |
|
fveq2 |
|
16 |
|
fveq2 |
|
17 |
15 16
|
eqeq12d |
|
18 |
17
|
rspcv |
|
19 |
14 18
|
syl |
|
20 |
|
simpl |
|
21 |
|
eqtr |
|
22 |
21
|
adantl |
|
23 |
20 22
|
eqtrd |
|
24 |
23
|
exp32 |
|
25 |
24
|
com23 |
|
26 |
25
|
eqcoms |
|
27 |
26
|
3ad2ant2 |
|
28 |
27
|
com12 |
|
29 |
28
|
3ad2ant2 |
|
30 |
29
|
impcom |
|
31 |
30
|
adantr |
|
32 |
31
|
imp |
|
33 |
|
fveq2 |
|
34 |
33
|
eqcoms |
|
35 |
34
|
adantl |
|
36 |
35
|
adantr |
|
37 |
32 36
|
eqtrd |
|
38 |
37
|
ex |
|
39 |
19 38
|
syld |
|
40 |
39
|
ex |
|
41 |
8 9 40
|
syl2an |
|
42 |
41
|
impd |
|
43 |
42
|
3adant3 |
|
44 |
43
|
imp |
|
45 |
7 44
|
jca |
|
46 |
6 45
|
mpdan |
|
47 |
|
fvex |
|
48 |
|
fveq2 |
|
49 |
|
fveq2 |
|
50 |
48 49
|
eqeq12d |
|
51 |
50
|
ralunsn |
|
52 |
47 51
|
ax-mp |
|
53 |
46 52
|
sylibr |
|
54 |
|
nnnn0 |
|
55 |
|
elnn0uz |
|
56 |
54 55
|
sylib |
|
57 |
56
|
3ad2ant3 |
|
58 |
8 57
|
syl |
|
59 |
58
|
3ad2ant1 |
|
60 |
|
fzisfzounsn |
|
61 |
59 60
|
syl |
|
62 |
61
|
raleqdv |
|
63 |
53 62
|
mpbird |
|