Metamath Proof Explorer


Theorem clwlkclwwlkf1lem3

Description: Lemma 3 for clwlkclwwlkf1 . (Contributed by Alexander van der Vekens, 5-Jul-2018) (Revised by AV, 30-Oct-2022)

Ref Expression
Hypotheses clwlkclwwlkf.c C = w ClWalks G | 1 1 st w
clwlkclwwlkf.a A = 1 st U
clwlkclwwlkf.b B = 2 nd U
clwlkclwwlkf.d D = 1 st W
clwlkclwwlkf.e E = 2 nd W
Assertion clwlkclwwlkf1lem3 U C W C B prefix A = E prefix D i 0 A B i = E i

Proof

Step Hyp Ref Expression
1 clwlkclwwlkf.c C = w ClWalks G | 1 1 st w
2 clwlkclwwlkf.a A = 1 st U
3 clwlkclwwlkf.b B = 2 nd U
4 clwlkclwwlkf.d D = 1 st W
5 clwlkclwwlkf.e E = 2 nd W
6 1 2 3 4 5 clwlkclwwlkf1lem2 U C W C B prefix A = E prefix D A = D i 0 ..^ A B i = E i
7 simprr U C W C B prefix A = E prefix D A = D i 0 ..^ A B i = E i i 0 ..^ A B i = E i
8 1 2 3 clwlkclwwlkflem U C A Walks G B B 0 = B A A
9 1 4 5 clwlkclwwlkflem W C D Walks G E E 0 = E D D
10 lbfzo0 0 0 ..^ A A
11 10 biimpri A 0 0 ..^ A
12 11 3ad2ant3 A Walks G B B 0 = B A A 0 0 ..^ A
13 12 adantr A Walks G B B 0 = B A A D Walks G E E 0 = E D D 0 0 ..^ A
14 13 adantr A Walks G B B 0 = B A A D Walks G E E 0 = E D D A = D 0 0 ..^ A
15 fveq2 i = 0 B i = B 0
16 fveq2 i = 0 E i = E 0
17 15 16 eqeq12d i = 0 B i = E i B 0 = E 0
18 17 rspcv 0 0 ..^ A i 0 ..^ A B i = E i B 0 = E 0
19 14 18 syl A Walks G B B 0 = B A A D Walks G E E 0 = E D D A = D i 0 ..^ A B i = E i B 0 = E 0
20 simpl B A = B 0 B 0 = E 0 E 0 = E D B A = B 0
21 eqtr B 0 = E 0 E 0 = E D B 0 = E D
22 21 adantl B A = B 0 B 0 = E 0 E 0 = E D B 0 = E D
23 20 22 eqtrd B A = B 0 B 0 = E 0 E 0 = E D B A = E D
24 23 exp32 B A = B 0 B 0 = E 0 E 0 = E D B A = E D
25 24 com23 B A = B 0 E 0 = E D B 0 = E 0 B A = E D
26 25 eqcoms B 0 = B A E 0 = E D B 0 = E 0 B A = E D
27 26 3ad2ant2 A Walks G B B 0 = B A A E 0 = E D B 0 = E 0 B A = E D
28 27 com12 E 0 = E D A Walks G B B 0 = B A A B 0 = E 0 B A = E D
29 28 3ad2ant2 D Walks G E E 0 = E D D A Walks G B B 0 = B A A B 0 = E 0 B A = E D
30 29 impcom A Walks G B B 0 = B A A D Walks G E E 0 = E D D B 0 = E 0 B A = E D
31 30 adantr A Walks G B B 0 = B A A D Walks G E E 0 = E D D A = D B 0 = E 0 B A = E D
32 31 imp A Walks G B B 0 = B A A D Walks G E E 0 = E D D A = D B 0 = E 0 B A = E D
33 fveq2 D = A E D = E A
34 33 eqcoms A = D E D = E A
35 34 adantl A Walks G B B 0 = B A A D Walks G E E 0 = E D D A = D E D = E A
36 35 adantr A Walks G B B 0 = B A A D Walks G E E 0 = E D D A = D B 0 = E 0 E D = E A
37 32 36 eqtrd A Walks G B B 0 = B A A D Walks G E E 0 = E D D A = D B 0 = E 0 B A = E A
38 37 ex A Walks G B B 0 = B A A D Walks G E E 0 = E D D A = D B 0 = E 0 B A = E A
39 19 38 syld A Walks G B B 0 = B A A D Walks G E E 0 = E D D A = D i 0 ..^ A B i = E i B A = E A
40 39 ex A Walks G B B 0 = B A A D Walks G E E 0 = E D D A = D i 0 ..^ A B i = E i B A = E A
41 8 9 40 syl2an U C W C A = D i 0 ..^ A B i = E i B A = E A
42 41 impd U C W C A = D i 0 ..^ A B i = E i B A = E A
43 42 3adant3 U C W C B prefix A = E prefix D A = D i 0 ..^ A B i = E i B A = E A
44 43 imp U C W C B prefix A = E prefix D A = D i 0 ..^ A B i = E i B A = E A
45 7 44 jca U C W C B prefix A = E prefix D A = D i 0 ..^ A B i = E i i 0 ..^ A B i = E i B A = E A
46 6 45 mpdan U C W C B prefix A = E prefix D i 0 ..^ A B i = E i B A = E A
47 fvex A V
48 fveq2 i = A B i = B A
49 fveq2 i = A E i = E A
50 48 49 eqeq12d i = A B i = E i B A = E A
51 50 ralunsn A V i 0 ..^ A A B i = E i i 0 ..^ A B i = E i B A = E A
52 47 51 ax-mp i 0 ..^ A A B i = E i i 0 ..^ A B i = E i B A = E A
53 46 52 sylibr U C W C B prefix A = E prefix D i 0 ..^ A A B i = E i
54 nnnn0 A A 0
55 elnn0uz A 0 A 0
56 54 55 sylib A A 0
57 56 3ad2ant3 A Walks G B B 0 = B A A A 0
58 8 57 syl U C A 0
59 58 3ad2ant1 U C W C B prefix A = E prefix D A 0
60 fzisfzounsn A 0 0 A = 0 ..^ A A
61 59 60 syl U C W C B prefix A = E prefix D 0 A = 0 ..^ A A
62 61 raleqdv U C W C B prefix A = E prefix D i 0 A B i = E i i 0 ..^ A A B i = E i
63 53 62 mpbird U C W C B prefix A = E prefix D i 0 A B i = E i