Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlkf.c |
|
2 |
|
clwlkclwwlkf.f |
|
3 |
1 2
|
clwlkclwwlkf |
|
4 |
|
clwwlkgt0 |
|
5 |
|
eqid |
|
6 |
5
|
clwwlkbp |
|
7 |
|
lencl |
|
8 |
7
|
nn0zd |
|
9 |
|
zgt0ge1 |
|
10 |
8 9
|
syl |
|
11 |
10
|
biimpd |
|
12 |
11
|
anc2li |
|
13 |
12
|
3ad2ant2 |
|
14 |
6 13
|
syl |
|
15 |
4 14
|
mpd |
|
16 |
15
|
adantl |
|
17 |
|
eqid |
|
18 |
5 17
|
clwlkclwwlk2 |
|
19 |
|
df-br |
|
20 |
|
simpr2 |
|
21 |
|
simpr3 |
|
22 |
|
simpl |
|
23 |
1
|
clwlkclwwlkfolem |
|
24 |
20 21 22 23
|
syl3anc |
|
25 |
23
|
3expa |
|
26 |
|
ovex |
|
27 |
|
fveq2 |
|
28 |
|
2fveq3 |
|
29 |
28
|
oveq1d |
|
30 |
27 29
|
oveq12d |
|
31 |
|
vex |
|
32 |
|
ovex |
|
33 |
31 32
|
op2nd |
|
34 |
33
|
fveq2i |
|
35 |
34
|
oveq1i |
|
36 |
33 35
|
oveq12i |
|
37 |
30 36
|
eqtrdi |
|
38 |
37 2
|
fvmptg |
|
39 |
25 26 38
|
sylancl |
|
40 |
|
wrdlenccats1lenm1 |
|
41 |
40
|
ad2antrr |
|
42 |
41
|
oveq2d |
|
43 |
|
simpll |
|
44 |
|
simpl |
|
45 |
|
wrdsymb1 |
|
46 |
44 45
|
syl |
|
47 |
46
|
s1cld |
|
48 |
|
eqidd |
|
49 |
|
pfxccatid |
|
50 |
43 47 48 49
|
syl3anc |
|
51 |
39 42 50
|
3eqtrrd |
|
52 |
51
|
ex |
|
53 |
52
|
3adant1 |
|
54 |
53
|
ad2antlr |
|
55 |
|
fveq2 |
|
56 |
55
|
eqeq2d |
|
57 |
56
|
imbi2d |
|
58 |
57
|
adantl |
|
59 |
54 58
|
mpbird |
|
60 |
24 59
|
rspcimedv |
|
61 |
60
|
ex |
|
62 |
61
|
pm2.43b |
|
63 |
19 62
|
syl5bi |
|
64 |
63
|
exlimdv |
|
65 |
18 64
|
sylbird |
|
66 |
65
|
3expib |
|
67 |
66
|
com23 |
|
68 |
67
|
imp |
|
69 |
16 68
|
mpd |
|
70 |
69
|
ralrimiva |
|
71 |
|
dffo3 |
|
72 |
3 70 71
|
sylanbrc |
|