Metamath Proof Explorer


Theorem clwlkclwwlklem1

Description: Lemma 1 for clwlkclwwlk . (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 11-Apr-2021)

Ref Expression
Assertion clwlkclwwlklem1 E : dom E 1-1 R P Word V 2 P lastS P = P 0 i 0 ..^ P 1 - 0 - 1 P i P i + 1 ran E P P 2 P 0 ran E f f Word dom E P : 0 f V i 0 ..^ f E f i = P i P i + 1 P 0 = P f

Proof

Step Hyp Ref Expression
1 ovex 0 ..^ P 1 V
2 mptexg 0 ..^ P 1 V x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 V
3 1 2 mp1i E : dom E 1-1 R P Word V 2 P x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 V
4 eqid x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
5 4 clwlkclwwlklem2a E : dom E 1-1 R P Word V 2 P lastS P = P 0 i 0 ..^ P 1 - 0 - 1 P i P i + 1 ran E P P 2 P 0 ran E x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 Word dom E P : 0 x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 V i 0 ..^ x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 E x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 i = P i P i + 1 P 0 = P x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
6 5 adantr E : dom E 1-1 R P Word V 2 P f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 lastS P = P 0 i 0 ..^ P 1 - 0 - 1 P i P i + 1 ran E P P 2 P 0 ran E x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 Word dom E P : 0 x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 V i 0 ..^ x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 E x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 i = P i P i + 1 P 0 = P x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
7 eleq1 f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 f Word dom E x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 Word dom E
8 fveq2 f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
9 8 oveq2d f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 0 f = 0 x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
10 9 feq2d f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 P : 0 f V P : 0 x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 V
11 8 oveq2d f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 0 ..^ f = 0 ..^ x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
12 fveq1 f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 f i = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 i
13 12 fveqeq2d f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 E f i = P i P i + 1 E x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 i = P i P i + 1
14 11 13 raleqbidv f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 i 0 ..^ f E f i = P i P i + 1 i 0 ..^ x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 E x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 i = P i P i + 1
15 7 10 14 3anbi123d f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 f Word dom E P : 0 f V i 0 ..^ f E f i = P i P i + 1 x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 Word dom E P : 0 x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 V i 0 ..^ x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 E x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 i = P i P i + 1
16 2fveq3 f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 P f = P x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
17 16 eqeq2d f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 P 0 = P f P 0 = P x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
18 15 17 anbi12d f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 f Word dom E P : 0 f V i 0 ..^ f E f i = P i P i + 1 P 0 = P f x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 Word dom E P : 0 x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 V i 0 ..^ x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 E x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 i = P i P i + 1 P 0 = P x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
19 18 imbi2d f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 lastS P = P 0 i 0 ..^ P 1 - 0 - 1 P i P i + 1 ran E P P 2 P 0 ran E f Word dom E P : 0 f V i 0 ..^ f E f i = P i P i + 1 P 0 = P f lastS P = P 0 i 0 ..^ P 1 - 0 - 1 P i P i + 1 ran E P P 2 P 0 ran E x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 Word dom E P : 0 x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 V i 0 ..^ x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 E x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 i = P i P i + 1 P 0 = P x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
20 19 adantl E : dom E 1-1 R P Word V 2 P f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 lastS P = P 0 i 0 ..^ P 1 - 0 - 1 P i P i + 1 ran E P P 2 P 0 ran E f Word dom E P : 0 f V i 0 ..^ f E f i = P i P i + 1 P 0 = P f lastS P = P 0 i 0 ..^ P 1 - 0 - 1 P i P i + 1 ran E P P 2 P 0 ran E x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 Word dom E P : 0 x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 V i 0 ..^ x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 E x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 i = P i P i + 1 P 0 = P x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
21 6 20 mpbird E : dom E 1-1 R P Word V 2 P f = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 lastS P = P 0 i 0 ..^ P 1 - 0 - 1 P i P i + 1 ran E P P 2 P 0 ran E f Word dom E P : 0 f V i 0 ..^ f E f i = P i P i + 1 P 0 = P f
22 3 21 spcimedv E : dom E 1-1 R P Word V 2 P lastS P = P 0 i 0 ..^ P 1 - 0 - 1 P i P i + 1 ran E P P 2 P 0 ran E f f Word dom E P : 0 f V i 0 ..^ f E f i = P i P i + 1 P 0 = P f