Metamath Proof Explorer


Theorem clwlkclwwlklem2a2

Description: Lemma 2 for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 21-Jun-2018)

Ref Expression
Hypothesis clwlkclwwlklem2.f F = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
Assertion clwlkclwwlklem2a2 P Word V 2 P F = P 1

Proof

Step Hyp Ref Expression
1 clwlkclwwlklem2.f F = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
2 lencl P Word V P 0
3 nn0z P 0 P
4 3 adantr P 0 2 P P
5 0red P 0 2 P 0
6 2re 2
7 6 a1i P 0 2 P 2
8 nn0re P 0 P
9 8 adantr P 0 2 P P
10 2pos 0 < 2
11 10 a1i P 0 2 P 0 < 2
12 simpr P 0 2 P 2 P
13 5 7 9 11 12 ltletrd P 0 2 P 0 < P
14 elnnz P P 0 < P
15 4 13 14 sylanbrc P 0 2 P P
16 2 15 sylan P Word V 2 P P
17 nnm1nn0 P P 1 0
18 16 17 syl P Word V 2 P P 1 0
19 fvex E -1 P x P x + 1 V
20 fvex E -1 P x P 0 V
21 19 20 ifex if x < P 2 E -1 P x P x + 1 E -1 P x P 0 V
22 21 1 fnmpti F Fn 0 ..^ P 1
23 ffzo0hash P 1 0 F Fn 0 ..^ P 1 F = P 1
24 18 22 23 sylancl P Word V 2 P F = P 1