Metamath Proof Explorer


Theorem clwlkclwwlklem2fv1

Description: Lemma 4a for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 22-Jun-2018)

Ref Expression
Hypothesis clwlkclwwlklem2.f F = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
Assertion clwlkclwwlklem2fv1 P 0 I 0 ..^ P 2 F I = E -1 P I P I + 1

Proof

Step Hyp Ref Expression
1 clwlkclwwlklem2.f F = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
2 breq1 x = I x < P 2 I < P 2
3 fveq2 x = I P x = P I
4 fvoveq1 x = I P x + 1 = P I + 1
5 3 4 preq12d x = I P x P x + 1 = P I P I + 1
6 5 fveq2d x = I E -1 P x P x + 1 = E -1 P I P I + 1
7 3 preq1d x = I P x P 0 = P I P 0
8 7 fveq2d x = I E -1 P x P 0 = E -1 P I P 0
9 2 6 8 ifbieq12d x = I if x < P 2 E -1 P x P x + 1 E -1 P x P 0 = if I < P 2 E -1 P I P I + 1 E -1 P I P 0
10 elfzolt2 I 0 ..^ P 2 I < P 2
11 10 adantl P 0 I 0 ..^ P 2 I < P 2
12 11 iftrued P 0 I 0 ..^ P 2 if I < P 2 E -1 P I P I + 1 E -1 P I P 0 = E -1 P I P I + 1
13 9 12 sylan9eqr P 0 I 0 ..^ P 2 x = I if x < P 2 E -1 P x P x + 1 E -1 P x P 0 = E -1 P I P I + 1
14 nn0z P 0 P
15 2z 2
16 15 a1i P 0 2
17 14 16 zsubcld P 0 P 2
18 peano2zm P P 1
19 14 18 syl P 0 P 1
20 1red P 0 1
21 2re 2
22 21 a1i P 0 2
23 nn0re P 0 P
24 1le2 1 2
25 24 a1i P 0 1 2
26 20 22 23 25 lesub2dd P 0 P 2 P 1
27 eluz2 P 1 P 2 P 2 P 1 P 2 P 1
28 17 19 26 27 syl3anbrc P 0 P 1 P 2
29 fzoss2 P 1 P 2 0 ..^ P 2 0 ..^ P 1
30 28 29 syl P 0 0 ..^ P 2 0 ..^ P 1
31 30 sselda P 0 I 0 ..^ P 2 I 0 ..^ P 1
32 fvexd P 0 I 0 ..^ P 2 E -1 P I P I + 1 V
33 1 13 31 32 fvmptd2 P 0 I 0 ..^ P 2 F I = E -1 P I P I + 1