Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlklem2.f |
|
2 |
|
simpr |
|
3 |
|
nn0z |
|
4 |
|
2z |
|
5 |
3 4
|
jctir |
|
6 |
|
zsubcl |
|
7 |
5 6
|
syl |
|
8 |
7
|
adantr |
|
9 |
8
|
adantr |
|
10 |
2 9
|
eqeltrd |
|
11 |
10
|
ex |
|
12 |
|
zre |
|
13 |
|
nn0re |
|
14 |
|
2re |
|
15 |
14
|
a1i |
|
16 |
13 15
|
resubcld |
|
17 |
16
|
adantr |
|
18 |
|
lttri3 |
|
19 |
12 17 18
|
syl2anr |
|
20 |
|
simpl |
|
21 |
19 20
|
syl6bi |
|
22 |
21
|
ex |
|
23 |
11 22
|
syld |
|
24 |
23
|
com13 |
|
25 |
24
|
pm2.43i |
|
26 |
25
|
impcom |
|
27 |
26
|
iffalsed |
|
28 |
|
fveq2 |
|
29 |
28
|
adantl |
|
30 |
29
|
preq1d |
|
31 |
30
|
fveq2d |
|
32 |
27 31
|
eqtrd |
|
33 |
5
|
adantr |
|
34 |
33 6
|
syl |
|
35 |
13 15
|
subge0d |
|
36 |
35
|
biimpar |
|
37 |
|
elnn0z |
|
38 |
34 36 37
|
sylanbrc |
|
39 |
|
nn0ge2m1nn |
|
40 |
|
1red |
|
41 |
14
|
a1i |
|
42 |
13
|
adantr |
|
43 |
|
1lt2 |
|
44 |
43
|
a1i |
|
45 |
40 41 42 44
|
ltsub2dd |
|
46 |
|
elfzo0 |
|
47 |
38 39 45 46
|
syl3anbrc |
|
48 |
|
fvexd |
|
49 |
1 32 47 48
|
fvmptd2 |
|