Metamath Proof Explorer


Theorem clwlkclwwlklem2fv2

Description: Lemma 4b for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 22-Jun-2018)

Ref Expression
Hypothesis clwlkclwwlklem2.f F = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
Assertion clwlkclwwlklem2fv2 P 0 2 P F P 2 = E -1 P P 2 P 0

Proof

Step Hyp Ref Expression
1 clwlkclwwlklem2.f F = x 0 ..^ P 1 if x < P 2 E -1 P x P x + 1 E -1 P x P 0
2 simpr P 0 2 P x = P 2 x = P 2
3 nn0z P 0 P
4 2z 2
5 3 4 jctir P 0 P 2
6 zsubcl P 2 P 2
7 5 6 syl P 0 P 2
8 7 adantr P 0 2 P P 2
9 8 adantr P 0 2 P x = P 2 P 2
10 2 9 eqeltrd P 0 2 P x = P 2 x
11 10 ex P 0 2 P x = P 2 x
12 zre x x
13 nn0re P 0 P
14 2re 2
15 14 a1i P 0 2
16 13 15 resubcld P 0 P 2
17 16 adantr P 0 2 P P 2
18 lttri3 x P 2 x = P 2 ¬ x < P 2 ¬ P 2 < x
19 12 17 18 syl2anr P 0 2 P x x = P 2 ¬ x < P 2 ¬ P 2 < x
20 simpl ¬ x < P 2 ¬ P 2 < x ¬ x < P 2
21 19 20 syl6bi P 0 2 P x x = P 2 ¬ x < P 2
22 21 ex P 0 2 P x x = P 2 ¬ x < P 2
23 11 22 syld P 0 2 P x = P 2 x = P 2 ¬ x < P 2
24 23 com13 x = P 2 x = P 2 P 0 2 P ¬ x < P 2
25 24 pm2.43i x = P 2 P 0 2 P ¬ x < P 2
26 25 impcom P 0 2 P x = P 2 ¬ x < P 2
27 26 iffalsed P 0 2 P x = P 2 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 = E -1 P x P 0
28 fveq2 x = P 2 P x = P P 2
29 28 adantl P 0 2 P x = P 2 P x = P P 2
30 29 preq1d P 0 2 P x = P 2 P x P 0 = P P 2 P 0
31 30 fveq2d P 0 2 P x = P 2 E -1 P x P 0 = E -1 P P 2 P 0
32 27 31 eqtrd P 0 2 P x = P 2 if x < P 2 E -1 P x P x + 1 E -1 P x P 0 = E -1 P P 2 P 0
33 5 adantr P 0 2 P P 2
34 33 6 syl P 0 2 P P 2
35 13 15 subge0d P 0 0 P 2 2 P
36 35 biimpar P 0 2 P 0 P 2
37 elnn0z P 2 0 P 2 0 P 2
38 34 36 37 sylanbrc P 0 2 P P 2 0
39 nn0ge2m1nn P 0 2 P P 1
40 1red P 0 2 P 1
41 14 a1i P 0 2 P 2
42 13 adantr P 0 2 P P
43 1lt2 1 < 2
44 43 a1i P 0 2 P 1 < 2
45 40 41 42 44 ltsub2dd P 0 2 P P 2 < P 1
46 elfzo0 P 2 0 ..^ P 1 P 2 0 P 1 P 2 < P 1
47 38 39 45 46 syl3anbrc P 0 2 P P 2 0 ..^ P 1
48 fvexd P 0 2 P E -1 P P 2 P 0 V
49 1 32 47 48 fvmptd2 P 0 2 P F P 2 = E -1 P P 2 P 0