Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|
2 |
|
simp1 |
|
3 |
2
|
adantr |
|
4 |
1 3
|
anim12i |
|
5 |
|
simp3 |
|
6 |
|
simpl2 |
|
7 |
5 6
|
anim12ci |
|
8 |
|
simp3 |
|
9 |
8
|
anim1i |
|
10 |
9
|
adantl |
|
11 |
|
clwlkclwwlklem2 |
|
12 |
4 7 10 11
|
syl3anc |
|
13 |
|
lencl |
|
14 |
|
lencl |
|
15 |
|
ffz0hash |
|
16 |
|
oveq1 |
|
17 |
16
|
oveq1d |
|
18 |
|
nn0cn |
|
19 |
|
peano2cn |
|
20 |
|
peano2cnm |
|
21 |
18 19 20
|
3syl |
|
22 |
21
|
subid1d |
|
23 |
|
1cnd |
|
24 |
18 23
|
pncand |
|
25 |
22 24
|
eqtrd |
|
26 |
25
|
adantr |
|
27 |
17 26
|
sylan9eqr |
|
28 |
27
|
oveq1d |
|
29 |
28
|
oveq2d |
|
30 |
29
|
raleqdv |
|
31 |
|
oveq1 |
|
32 |
|
2cnd |
|
33 |
18 32 23
|
subsub3d |
|
34 |
|
2m1e1 |
|
35 |
34
|
a1i |
|
36 |
35
|
oveq2d |
|
37 |
33 36
|
eqtr3d |
|
38 |
37
|
adantr |
|
39 |
31 38
|
sylan9eqr |
|
40 |
39
|
fveq2d |
|
41 |
40
|
preq1d |
|
42 |
41
|
eleq1d |
|
43 |
30 42
|
anbi12d |
|
44 |
43
|
anbi2d |
|
45 |
|
3anass |
|
46 |
44 45
|
bitr4di |
|
47 |
46
|
expcom |
|
48 |
47
|
expd |
|
49 |
15 48
|
syl |
|
50 |
49
|
ex |
|
51 |
50
|
com23 |
|
52 |
14 14 51
|
sylc |
|
53 |
52
|
imp |
|
54 |
53
|
3adant3 |
|
55 |
54
|
adantr |
|
56 |
13 55
|
syl5com |
|
57 |
56
|
3ad2ant2 |
|
58 |
57
|
imp |
|
59 |
12 58
|
mpbird |
|
60 |
59
|
ex |
|
61 |
60
|
exlimdv |
|
62 |
|
clwlkclwwlklem1 |
|
63 |
61 62
|
impbid |
|