Metamath Proof Explorer


Theorem clwlkcompim

Description: Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 17-Feb-2021)

Ref Expression
Hypotheses isclwlke.v V = Vtx G
isclwlke.i I = iEdg G
clwlkcomp.1 F = 1 st W
clwlkcomp.2 P = 2 nd W
Assertion clwlkcompim W ClWalks G F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k P 0 = P F

Proof

Step Hyp Ref Expression
1 isclwlke.v V = Vtx G
2 isclwlke.i I = iEdg G
3 clwlkcomp.1 F = 1 st W
4 clwlkcomp.2 P = 2 nd W
5 elfvex W ClWalks G G V
6 clwlks ClWalks G = f g | f Walks G g g 0 = g f
7 6 a1i G V ClWalks G = f g | f Walks G g g 0 = g f
8 7 eleq2d G V W ClWalks G W f g | f Walks G g g 0 = g f
9 elopaelxp W f g | f Walks G g g 0 = g f W V × V
10 9 anim2i G V W f g | f Walks G g g 0 = g f G V W V × V
11 10 ex G V W f g | f Walks G g g 0 = g f G V W V × V
12 8 11 sylbid G V W ClWalks G G V W V × V
13 5 12 mpcom W ClWalks G G V W V × V
14 1 2 3 4 clwlkcomp G V W V × V W ClWalks G F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k P 0 = P F
15 13 14 syl W ClWalks G W ClWalks G F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k P 0 = P F
16 15 ibi W ClWalks G F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k P 0 = P F