Metamath Proof Explorer


Theorem clwlkl1loop

Description: A closed walk of length 1 is a loop. (Contributed by AV, 22-Apr-2021)

Ref Expression
Assertion clwlkl1loop Fun iEdg G F ClWalks G P F = 1 P 0 = P 1 P 0 Edg G

Proof

Step Hyp Ref Expression
1 isclwlk F ClWalks G P F Walks G P P 0 = P F
2 fveq2 F = 1 P F = P 1
3 2 eqeq2d F = 1 P 0 = P F P 0 = P 1
4 3 anbi2d F = 1 F Walks G P P 0 = P F F Walks G P P 0 = P 1
5 simp2r F = 1 F Walks G P P 0 = P 1 Fun iEdg G P 0 = P 1
6 simp3 F = 1 F Walks G P P 0 = P 1 Fun iEdg G Fun iEdg G
7 simp2l F = 1 F Walks G P P 0 = P 1 Fun iEdg G F Walks G P
8 simpr F Walks G P P 0 = P 1 P 0 = P 1
9 8 anim2i F = 1 F Walks G P P 0 = P 1 F = 1 P 0 = P 1
10 9 3adant3 F = 1 F Walks G P P 0 = P 1 Fun iEdg G F = 1 P 0 = P 1
11 wlkl1loop Fun iEdg G F Walks G P F = 1 P 0 = P 1 P 0 Edg G
12 6 7 10 11 syl21anc F = 1 F Walks G P P 0 = P 1 Fun iEdg G P 0 Edg G
13 5 12 jca F = 1 F Walks G P P 0 = P 1 Fun iEdg G P 0 = P 1 P 0 Edg G
14 13 3exp F = 1 F Walks G P P 0 = P 1 Fun iEdg G P 0 = P 1 P 0 Edg G
15 4 14 sylbid F = 1 F Walks G P P 0 = P F Fun iEdg G P 0 = P 1 P 0 Edg G
16 15 com13 Fun iEdg G F Walks G P P 0 = P F F = 1 P 0 = P 1 P 0 Edg G
17 1 16 syl5bi Fun iEdg G F ClWalks G P F = 1 P 0 = P 1 P 0 Edg G
18 17 3imp Fun iEdg G F ClWalks G P F = 1 P 0 = P 1 P 0 Edg G