Database
GRAPH THEORY
Walks, paths and cycles
Closed walks
clwlkl1loop
Next ⟩
Circuits and cycles
Metamath Proof Explorer
Ascii
Unicode
Theorem
clwlkl1loop
Description:
A closed walk of length 1 is a loop.
(Contributed by
AV
, 22-Apr-2021)
Ref
Expression
Assertion
clwlkl1loop
⊢
Fun
⁡
iEdg
⁡
G
∧
F
ClWalks
⁡
G
P
∧
F
=
1
→
P
⁡
0
=
P
⁡
1
∧
P
⁡
0
∈
Edg
⁡
G
Proof
Step
Hyp
Ref
Expression
1
isclwlk
⊢
F
ClWalks
⁡
G
P
↔
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
F
2
fveq2
⊢
F
=
1
→
P
⁡
F
=
P
⁡
1
3
2
eqeq2d
⊢
F
=
1
→
P
⁡
0
=
P
⁡
F
↔
P
⁡
0
=
P
⁡
1
4
3
anbi2d
⊢
F
=
1
→
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
F
↔
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
1
5
simp2r
⊢
F
=
1
∧
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
1
∧
Fun
⁡
iEdg
⁡
G
→
P
⁡
0
=
P
⁡
1
6
simp3
⊢
F
=
1
∧
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
1
∧
Fun
⁡
iEdg
⁡
G
→
Fun
⁡
iEdg
⁡
G
7
simp2l
⊢
F
=
1
∧
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
1
∧
Fun
⁡
iEdg
⁡
G
→
F
Walks
⁡
G
P
8
simpr
⊢
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
1
→
P
⁡
0
=
P
⁡
1
9
8
anim2i
⊢
F
=
1
∧
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
1
→
F
=
1
∧
P
⁡
0
=
P
⁡
1
10
9
3adant3
⊢
F
=
1
∧
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
1
∧
Fun
⁡
iEdg
⁡
G
→
F
=
1
∧
P
⁡
0
=
P
⁡
1
11
wlkl1loop
⊢
Fun
⁡
iEdg
⁡
G
∧
F
Walks
⁡
G
P
∧
F
=
1
∧
P
⁡
0
=
P
⁡
1
→
P
⁡
0
∈
Edg
⁡
G
12
6
7
10
11
syl21anc
⊢
F
=
1
∧
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
1
∧
Fun
⁡
iEdg
⁡
G
→
P
⁡
0
∈
Edg
⁡
G
13
5
12
jca
⊢
F
=
1
∧
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
1
∧
Fun
⁡
iEdg
⁡
G
→
P
⁡
0
=
P
⁡
1
∧
P
⁡
0
∈
Edg
⁡
G
14
13
3exp
⊢
F
=
1
→
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
1
→
Fun
⁡
iEdg
⁡
G
→
P
⁡
0
=
P
⁡
1
∧
P
⁡
0
∈
Edg
⁡
G
15
4
14
sylbid
⊢
F
=
1
→
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
F
→
Fun
⁡
iEdg
⁡
G
→
P
⁡
0
=
P
⁡
1
∧
P
⁡
0
∈
Edg
⁡
G
16
15
com13
⊢
Fun
⁡
iEdg
⁡
G
→
F
Walks
⁡
G
P
∧
P
⁡
0
=
P
⁡
F
→
F
=
1
→
P
⁡
0
=
P
⁡
1
∧
P
⁡
0
∈
Edg
⁡
G
17
1
16
syl5bi
⊢
Fun
⁡
iEdg
⁡
G
→
F
ClWalks
⁡
G
P
→
F
=
1
→
P
⁡
0
=
P
⁡
1
∧
P
⁡
0
∈
Edg
⁡
G
18
17
3imp
⊢
Fun
⁡
iEdg
⁡
G
∧
F
ClWalks
⁡
G
P
∧
F
=
1
→
P
⁡
0
=
P
⁡
1
∧
P
⁡
0
∈
Edg
⁡
G