Metamath Proof Explorer


Theorem clwlknf1oclwwlkn

Description: There is a one-to-one onto function between the set of closed walks as words of length N and the set of closed walks of length N in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018) (Revised by AV, 3-May-2021) (Revised by AV, 1-Nov-2022)

Ref Expression
Hypotheses clwlknf1oclwwlkn.a A = 1 st c
clwlknf1oclwwlkn.b B = 2 nd c
clwlknf1oclwwlkn.c C = w ClWalks G | 1 st w = N
clwlknf1oclwwlkn.f F = c C B prefix A
Assertion clwlknf1oclwwlkn G USHGraph N F : C 1-1 onto N ClWWalksN G

Proof

Step Hyp Ref Expression
1 clwlknf1oclwwlkn.a A = 1 st c
2 clwlknf1oclwwlkn.b B = 2 nd c
3 clwlknf1oclwwlkn.c C = w ClWalks G | 1 st w = N
4 clwlknf1oclwwlkn.f F = c C B prefix A
5 eqid c w ClWalks G | 1 1 st w 2 nd c prefix 2 nd c 1 = c w ClWalks G | 1 1 st w 2 nd c prefix 2 nd c 1
6 2fveq3 s = w 1 st s = 1 st w
7 6 breq2d s = w 1 1 st s 1 1 st w
8 7 cbvrabv s ClWalks G | 1 1 st s = w ClWalks G | 1 1 st w
9 fveq2 d = c 2 nd d = 2 nd c
10 2fveq3 d = c 2 nd d = 2 nd c
11 10 oveq1d d = c 2 nd d 1 = 2 nd c 1
12 9 11 oveq12d d = c 2 nd d prefix 2 nd d 1 = 2 nd c prefix 2 nd c 1
13 12 cbvmptv d s ClWalks G | 1 1 st s 2 nd d prefix 2 nd d 1 = c s ClWalks G | 1 1 st s 2 nd c prefix 2 nd c 1
14 8 13 clwlkclwwlkf1o G USHGraph d s ClWalks G | 1 1 st s 2 nd d prefix 2 nd d 1 : s ClWalks G | 1 1 st s 1-1 onto ClWWalks G
15 14 adantr G USHGraph N d s ClWalks G | 1 1 st s 2 nd d prefix 2 nd d 1 : s ClWalks G | 1 1 st s 1-1 onto ClWWalks G
16 2fveq3 w = s 1 st w = 1 st s
17 16 breq2d w = s 1 1 st w 1 1 st s
18 17 cbvrabv w ClWalks G | 1 1 st w = s ClWalks G | 1 1 st s
19 18 mpteq1i c w ClWalks G | 1 1 st w 2 nd c prefix 2 nd c 1 = c s ClWalks G | 1 1 st s 2 nd c prefix 2 nd c 1
20 fveq2 c = d 2 nd c = 2 nd d
21 2fveq3 c = d 2 nd c = 2 nd d
22 21 oveq1d c = d 2 nd c 1 = 2 nd d 1
23 20 22 oveq12d c = d 2 nd c prefix 2 nd c 1 = 2 nd d prefix 2 nd d 1
24 23 cbvmptv c s ClWalks G | 1 1 st s 2 nd c prefix 2 nd c 1 = d s ClWalks G | 1 1 st s 2 nd d prefix 2 nd d 1
25 19 24 eqtri c w ClWalks G | 1 1 st w 2 nd c prefix 2 nd c 1 = d s ClWalks G | 1 1 st s 2 nd d prefix 2 nd d 1
26 25 a1i G USHGraph N c w ClWalks G | 1 1 st w 2 nd c prefix 2 nd c 1 = d s ClWalks G | 1 1 st s 2 nd d prefix 2 nd d 1
27 8 eqcomi w ClWalks G | 1 1 st w = s ClWalks G | 1 1 st s
28 27 a1i G USHGraph N w ClWalks G | 1 1 st w = s ClWalks G | 1 1 st s
29 eqidd G USHGraph N ClWWalks G = ClWWalks G
30 26 28 29 f1oeq123d G USHGraph N c w ClWalks G | 1 1 st w 2 nd c prefix 2 nd c 1 : w ClWalks G | 1 1 st w 1-1 onto ClWWalks G d s ClWalks G | 1 1 st s 2 nd d prefix 2 nd d 1 : s ClWalks G | 1 1 st s 1-1 onto ClWWalks G
31 15 30 mpbird G USHGraph N c w ClWalks G | 1 1 st w 2 nd c prefix 2 nd c 1 : w ClWalks G | 1 1 st w 1-1 onto ClWWalks G
32 fveq2 s = 2 nd c prefix 2 nd c 1 s = 2 nd c prefix 2 nd c 1
33 32 3ad2ant3 G USHGraph N c w ClWalks G | 1 1 st w s = 2 nd c prefix 2 nd c 1 s = 2 nd c prefix 2 nd c 1
34 2fveq3 w = c 1 st w = 1 st c
35 34 breq2d w = c 1 1 st w 1 1 st c
36 35 elrab c w ClWalks G | 1 1 st w c ClWalks G 1 1 st c
37 clwlknf1oclwwlknlem1 c ClWalks G 1 1 st c 2 nd c prefix 2 nd c 1 = 1 st c
38 36 37 sylbi c w ClWalks G | 1 1 st w 2 nd c prefix 2 nd c 1 = 1 st c
39 38 3ad2ant2 G USHGraph N c w ClWalks G | 1 1 st w s = 2 nd c prefix 2 nd c 1 2 nd c prefix 2 nd c 1 = 1 st c
40 33 39 eqtrd G USHGraph N c w ClWalks G | 1 1 st w s = 2 nd c prefix 2 nd c 1 s = 1 st c
41 40 eqeq1d G USHGraph N c w ClWalks G | 1 1 st w s = 2 nd c prefix 2 nd c 1 s = N 1 st c = N
42 5 31 41 f1oresrab G USHGraph N c w ClWalks G | 1 1 st w 2 nd c prefix 2 nd c 1 c w ClWalks G | 1 1 st w | 1 st c = N : c w ClWalks G | 1 1 st w | 1 st c = N 1-1 onto s ClWWalks G | s = N
43 1 2 3 4 clwlknf1oclwwlknlem3 G USHGraph N F = c w ClWalks G | 1 1 st w B prefix A C
44 2 a1i G USHGraph N c w ClWalks G | 1 1 st w B = 2 nd c
45 clwlkwlk c ClWalks G c Walks G
46 wlkcpr c Walks G 1 st c Walks G 2 nd c
47 1 fveq2i A = 1 st c
48 wlklenvm1 1 st c Walks G 2 nd c 1 st c = 2 nd c 1
49 47 48 syl5eq 1 st c Walks G 2 nd c A = 2 nd c 1
50 46 49 sylbi c Walks G A = 2 nd c 1
51 45 50 syl c ClWalks G A = 2 nd c 1
52 51 adantr c ClWalks G 1 1 st c A = 2 nd c 1
53 36 52 sylbi c w ClWalks G | 1 1 st w A = 2 nd c 1
54 53 adantl G USHGraph N c w ClWalks G | 1 1 st w A = 2 nd c 1
55 44 54 oveq12d G USHGraph N c w ClWalks G | 1 1 st w B prefix A = 2 nd c prefix 2 nd c 1
56 55 mpteq2dva G USHGraph N c w ClWalks G | 1 1 st w B prefix A = c w ClWalks G | 1 1 st w 2 nd c prefix 2 nd c 1
57 34 eqeq1d w = c 1 st w = N 1 st c = N
58 57 cbvrabv w ClWalks G | 1 st w = N = c ClWalks G | 1 st c = N
59 nnge1 N 1 N
60 breq2 1 st c = N 1 1 st c 1 N
61 59 60 syl5ibrcom N 1 st c = N 1 1 st c
62 61 adantl G USHGraph N 1 st c = N 1 1 st c
63 62 adantr G USHGraph N c ClWalks G 1 st c = N 1 1 st c
64 63 pm4.71rd G USHGraph N c ClWalks G 1 st c = N 1 1 st c 1 st c = N
65 64 rabbidva G USHGraph N c ClWalks G | 1 st c = N = c ClWalks G | 1 1 st c 1 st c = N
66 58 65 syl5eq G USHGraph N w ClWalks G | 1 st w = N = c ClWalks G | 1 1 st c 1 st c = N
67 36 anbi1i c w ClWalks G | 1 1 st w 1 st c = N c ClWalks G 1 1 st c 1 st c = N
68 anass c ClWalks G 1 1 st c 1 st c = N c ClWalks G 1 1 st c 1 st c = N
69 67 68 bitri c w ClWalks G | 1 1 st w 1 st c = N c ClWalks G 1 1 st c 1 st c = N
70 69 rabbia2 c w ClWalks G | 1 1 st w | 1 st c = N = c ClWalks G | 1 1 st c 1 st c = N
71 66 3 70 3eqtr4g G USHGraph N C = c w ClWalks G | 1 1 st w | 1 st c = N
72 56 71 reseq12d G USHGraph N c w ClWalks G | 1 1 st w B prefix A C = c w ClWalks G | 1 1 st w 2 nd c prefix 2 nd c 1 c w ClWalks G | 1 1 st w | 1 st c = N
73 43 72 eqtrd G USHGraph N F = c w ClWalks G | 1 1 st w 2 nd c prefix 2 nd c 1 c w ClWalks G | 1 1 st w | 1 st c = N
74 clwlknf1oclwwlknlem2 N w ClWalks G | 1 st w = N = c ClWalks G | 1 1 st c 1 st c = N
75 74 adantl G USHGraph N w ClWalks G | 1 st w = N = c ClWalks G | 1 1 st c 1 st c = N
76 75 3 70 3eqtr4g G USHGraph N C = c w ClWalks G | 1 1 st w | 1 st c = N
77 clwwlkn N ClWWalksN G = s ClWWalks G | s = N
78 77 a1i G USHGraph N N ClWWalksN G = s ClWWalks G | s = N
79 73 76 78 f1oeq123d G USHGraph N F : C 1-1 onto N ClWWalksN G c w ClWalks G | 1 1 st w 2 nd c prefix 2 nd c 1 c w ClWalks G | 1 1 st w | 1 st c = N : c w ClWalks G | 1 1 st w | 1 st c = N 1-1 onto s ClWWalks G | s = N
80 42 79 mpbird G USHGraph N F : C 1-1 onto N ClWWalksN G