Metamath Proof Explorer


Theorem clwlknf1oclwwlknlem1

Description: Lemma 1 for clwlknf1oclwwlkn . (Contributed by AV, 26-May-2022) (Revised by AV, 1-Nov-2022)

Ref Expression
Assertion clwlknf1oclwwlknlem1 C ClWalks G 1 1 st C 2 nd C prefix 2 nd C 1 = 1 st C

Proof

Step Hyp Ref Expression
1 clwlkwlk C ClWalks G C Walks G
2 wlkcpr C Walks G 1 st C Walks G 2 nd C
3 eqid Vtx G = Vtx G
4 3 wlkpwrd 1 st C Walks G 2 nd C 2 nd C Word Vtx G
5 lencl 2 nd C Word Vtx G 2 nd C 0
6 4 5 syl 1 st C Walks G 2 nd C 2 nd C 0
7 wlklenvm1 1 st C Walks G 2 nd C 1 st C = 2 nd C 1
8 7 breq2d 1 st C Walks G 2 nd C 1 1 st C 1 2 nd C 1
9 1red 2 nd C 0 1
10 nn0re 2 nd C 0 2 nd C
11 9 9 10 leaddsub2d 2 nd C 0 1 + 1 2 nd C 1 2 nd C 1
12 1p1e2 1 + 1 = 2
13 12 breq1i 1 + 1 2 nd C 2 2 nd C
14 13 biimpi 1 + 1 2 nd C 2 2 nd C
15 11 14 syl6bir 2 nd C 0 1 2 nd C 1 2 2 nd C
16 4 5 15 3syl 1 st C Walks G 2 nd C 1 2 nd C 1 2 2 nd C
17 8 16 sylbid 1 st C Walks G 2 nd C 1 1 st C 2 2 nd C
18 17 imp 1 st C Walks G 2 nd C 1 1 st C 2 2 nd C
19 ige2m1fz 2 nd C 0 2 2 nd C 2 nd C 1 0 2 nd C
20 6 18 19 syl2an2r 1 st C Walks G 2 nd C 1 1 st C 2 nd C 1 0 2 nd C
21 pfxlen 2 nd C Word Vtx G 2 nd C 1 0 2 nd C 2 nd C prefix 2 nd C 1 = 2 nd C 1
22 4 20 21 syl2an2r 1 st C Walks G 2 nd C 1 1 st C 2 nd C prefix 2 nd C 1 = 2 nd C 1
23 7 eqcomd 1 st C Walks G 2 nd C 2 nd C 1 = 1 st C
24 23 adantr 1 st C Walks G 2 nd C 1 1 st C 2 nd C 1 = 1 st C
25 22 24 eqtrd 1 st C Walks G 2 nd C 1 1 st C 2 nd C prefix 2 nd C 1 = 1 st C
26 25 ex 1 st C Walks G 2 nd C 1 1 st C 2 nd C prefix 2 nd C 1 = 1 st C
27 2 26 sylbi C Walks G 1 1 st C 2 nd C prefix 2 nd C 1 = 1 st C
28 1 27 syl C ClWalks G 1 1 st C 2 nd C prefix 2 nd C 1 = 1 st C
29 28 imp C ClWalks G 1 1 st C 2 nd C prefix 2 nd C 1 = 1 st C