Metamath Proof Explorer


Theorem clwlknf1oclwwlknlem3

Description: Lemma 3 for clwlknf1oclwwlkn : The bijective function of clwlknf1oclwwlkn is the bijective function of clwlkclwwlkf1o restricted to the closed walks with a fixed positive length. (Contributed by AV, 26-May-2022) (Revised by AV, 1-Nov-2022)

Ref Expression
Hypotheses clwlknf1oclwwlkn.a A=1stc
clwlknf1oclwwlkn.b B=2ndc
clwlknf1oclwwlkn.c C=wClWalksG|1stw=N
clwlknf1oclwwlkn.f F=cCBprefixA
Assertion clwlknf1oclwwlknlem3 GUSHGraphNF=cwClWalksG|11stwBprefixAC

Proof

Step Hyp Ref Expression
1 clwlknf1oclwwlkn.a A=1stc
2 clwlknf1oclwwlkn.b B=2ndc
3 clwlknf1oclwwlkn.c C=wClWalksG|1stw=N
4 clwlknf1oclwwlkn.f F=cCBprefixA
5 nnge1 N1N
6 breq2 1stw=N11stw1N
7 5 6 syl5ibrcom N1stw=N11stw
8 7 ad2antlr GUSHGraphNwClWalksG1stw=N11stw
9 8 ss2rabdv GUSHGraphNwClWalksG|1stw=NwClWalksG|11stw
10 3 9 eqsstrid GUSHGraphNCwClWalksG|11stw
11 10 resmptd GUSHGraphNcwClWalksG|11stwBprefixAC=cCBprefixA
12 4 11 eqtr4id GUSHGraphNF=cwClWalksG|11stwBprefixAC