Metamath Proof Explorer


Theorem clwlkssizeeq

Description: The size of the set of closed walks as words of length N corresponds to the size of the set of closed walks of length N in a simple pseudograph. (Contributed by Alexander van der Vekens, 6-Jul-2018) (Revised by AV, 4-May-2021) (Revised by AV, 26-May-2022) (Proof shortened by AV, 3-Nov-2022)

Ref Expression
Assertion clwlkssizeeq GUSHGraphNNClWWalksNG=wClWalksG|1stw=N

Proof

Step Hyp Ref Expression
1 fvex ClWalksGV
2 1 rabex wClWalksG|1stw=NV
3 2 a1i GUSHGraphNwClWalksG|1stw=NV
4 eqid 1stc=1stc
5 eqid 2ndc=2ndc
6 eqid wClWalksG|1stw=N=wClWalksG|1stw=N
7 eqid cwClWalksG|1stw=N2ndcprefix1stc=cwClWalksG|1stw=N2ndcprefix1stc
8 4 5 6 7 clwlknf1oclwwlkn GUSHGraphNcwClWalksG|1stw=N2ndcprefix1stc:wClWalksG|1stw=N1-1 ontoNClWWalksNG
9 3 8 hasheqf1od GUSHGraphNwClWalksG|1stw=N=NClWWalksNG
10 9 eqcomd GUSHGraphNNClWWalksNG=wClWalksG|1stw=N