| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
1
|
clwwlkbp |
|
| 3 |
|
cshw0 |
|
| 4 |
3
|
3ad2ant2 |
|
| 5 |
4
|
eleq1d |
|
| 6 |
5
|
biimprd |
|
| 7 |
2 6
|
mpcom |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
eleq1d |
|
| 10 |
7 9
|
syl5ibrcom |
|
| 11 |
10
|
adantr |
|
| 12 |
|
fzo1fzo0n0 |
|
| 13 |
|
cshwcl |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
3ad2ant1 |
|
| 16 |
15
|
adantr |
|
| 17 |
|
simpl |
|
| 18 |
|
elfzoelz |
|
| 19 |
|
cshwlen |
|
| 20 |
17 18 19
|
syl2an |
|
| 21 |
|
hasheq0 |
|
| 22 |
21
|
bicomd |
|
| 23 |
22
|
necon3bid |
|
| 24 |
23
|
biimpa |
|
| 25 |
24
|
adantr |
|
| 26 |
20 25
|
eqnetrd |
|
| 27 |
14
|
adantr |
|
| 28 |
|
hasheq0 |
|
| 29 |
27 28
|
syl |
|
| 30 |
29
|
necon3bid |
|
| 31 |
26 30
|
mpbid |
|
| 32 |
31
|
3ad2antl1 |
|
| 33 |
16 32
|
jca |
|
| 34 |
17
|
3ad2ant1 |
|
| 35 |
34
|
anim1i |
|
| 36 |
|
3simpc |
|
| 37 |
36
|
adantr |
|
| 38 |
|
clwwisshclwwslem |
|
| 39 |
35 37 38
|
sylc |
|
| 40 |
|
elfzofz |
|
| 41 |
|
lswcshw |
|
| 42 |
40 41
|
sylan2 |
|
| 43 |
|
fzo0ss1 |
|
| 44 |
43
|
sseli |
|
| 45 |
|
cshwidx0 |
|
| 46 |
44 45
|
sylan2 |
|
| 47 |
42 46
|
preq12d |
|
| 48 |
47
|
ex |
|
| 49 |
48
|
adantr |
|
| 50 |
49
|
3ad2ant1 |
|
| 51 |
50
|
imp |
|
| 52 |
|
elfzo1elm1fzo0 |
|
| 53 |
52
|
adantl |
|
| 54 |
|
fveq2 |
|
| 55 |
54
|
adantl |
|
| 56 |
|
fvoveq1 |
|
| 57 |
18
|
zcnd |
|
| 58 |
57
|
adantl |
|
| 59 |
|
1cnd |
|
| 60 |
58 59
|
npcand |
|
| 61 |
60
|
fveq2d |
|
| 62 |
56 61
|
sylan9eqr |
|
| 63 |
55 62
|
preq12d |
|
| 64 |
63
|
eleq1d |
|
| 65 |
53 64
|
rspcdv |
|
| 66 |
65
|
a1d |
|
| 67 |
66
|
ex |
|
| 68 |
67
|
adantr |
|
| 69 |
68
|
com24 |
|
| 70 |
69
|
3imp1 |
|
| 71 |
51 70
|
eqeltrd |
|
| 72 |
33 39 71
|
3jca |
|
| 73 |
72
|
expcom |
|
| 74 |
|
eqid |
|
| 75 |
1 74
|
isclwwlk |
|
| 76 |
1 74
|
isclwwlk |
|
| 77 |
73 75 76
|
3imtr4g |
|
| 78 |
12 77
|
sylbir |
|
| 79 |
78
|
expcom |
|
| 80 |
79
|
com13 |
|
| 81 |
80
|
imp |
|
| 82 |
11 81
|
pm2.61dne |
|