Step |
Hyp |
Ref |
Expression |
1 |
|
elfzoelz |
|
2 |
|
cshwlen |
|
3 |
1 2
|
sylan2 |
|
4 |
3
|
oveq1d |
|
5 |
4
|
oveq2d |
|
6 |
5
|
eleq2d |
|
7 |
6
|
adantr |
|
8 |
|
simpll |
|
9 |
1
|
ad2antlr |
|
10 |
|
lencl |
|
11 |
|
nn0z |
|
12 |
|
peano2zm |
|
13 |
11 12
|
syl |
|
14 |
|
nn0re |
|
15 |
14
|
lem1d |
|
16 |
|
eluz2 |
|
17 |
13 11 15 16
|
syl3anbrc |
|
18 |
10 17
|
syl |
|
19 |
18
|
adantr |
|
20 |
|
fzoss2 |
|
21 |
19 20
|
syl |
|
22 |
21
|
sselda |
|
23 |
|
cshwidxmod |
|
24 |
8 9 22 23
|
syl3anc |
|
25 |
|
elfzo1 |
|
26 |
25
|
simp2bi |
|
27 |
26
|
adantl |
|
28 |
|
elfzom1p1elfzo |
|
29 |
27 28
|
sylan |
|
30 |
|
cshwidxmod |
|
31 |
8 9 29 30
|
syl3anc |
|
32 |
24 31
|
preq12d |
|
33 |
32
|
adantlr |
|
34 |
|
2z |
|
35 |
34
|
a1i |
|
36 |
|
nnz |
|
37 |
36
|
3ad2ant2 |
|
38 |
|
nnnn0 |
|
39 |
38
|
3ad2ant2 |
|
40 |
|
nnne0 |
|
41 |
40
|
3ad2ant2 |
|
42 |
|
1red |
|
43 |
|
nnre |
|
44 |
43
|
3ad2ant1 |
|
45 |
|
nnre |
|
46 |
45
|
3ad2ant2 |
|
47 |
|
nnge1 |
|
48 |
47
|
3ad2ant1 |
|
49 |
|
simp3 |
|
50 |
42 44 46 48 49
|
lelttrd |
|
51 |
42 50
|
gtned |
|
52 |
|
nn0n0n1ge2 |
|
53 |
39 41 51 52
|
syl3anc |
|
54 |
|
eluz2 |
|
55 |
35 37 53 54
|
syl3anbrc |
|
56 |
25 55
|
sylbi |
|
57 |
56
|
ad3antlr |
|
58 |
|
elfzoelz |
|
59 |
58
|
adantl |
|
60 |
1
|
ad3antlr |
|
61 |
|
simplrl |
|
62 |
|
lsw |
|
63 |
62
|
adantr |
|
64 |
63
|
preq1d |
|
65 |
64
|
eleq1d |
|
66 |
65
|
biimpcd |
|
67 |
66
|
adantl |
|
68 |
67
|
impcom |
|
69 |
68
|
adantr |
|
70 |
|
clwwisshclwwslemlem |
|
71 |
57 59 60 61 69 70
|
syl311anc |
|
72 |
33 71
|
eqeltrd |
|
73 |
72
|
ex |
|
74 |
7 73
|
sylbid |
|
75 |
74
|
ralrimiv |
|
76 |
75
|
ex |
|