Metamath Proof Explorer


Theorem clwwlk0on0

Description: There is no word over the set of vertices representing a closed walk on vertex X of length 0 in a graph G . (Contributed by AV, 17-Feb-2022) (Revised by AV, 25-Feb-2022)

Ref Expression
Assertion clwwlk0on0 X ClWWalksNOn G 0 =

Proof

Step Hyp Ref Expression
1 eqeq2 v = X w 0 = v w 0 = X
2 1 rabbidv v = X w n ClWWalksN G | w 0 = v = w n ClWWalksN G | w 0 = X
3 oveq1 n = 0 n ClWWalksN G = 0 ClWWalksN G
4 clwwlkn0 0 ClWWalksN G =
5 3 4 eqtrdi n = 0 n ClWWalksN G =
6 5 rabeqdv n = 0 w n ClWWalksN G | w 0 = X = w | w 0 = X
7 clwwlknonmpo ClWWalksNOn G = v Vtx G , n 0 w n ClWWalksN G | w 0 = v
8 0ex V
9 8 rabex w | w 0 = X V
10 2 6 7 9 ovmpo X Vtx G 0 0 X ClWWalksNOn G 0 = w | w 0 = X
11 rab0 w | w 0 = X =
12 10 11 eqtrdi X Vtx G 0 0 X ClWWalksNOn G 0 =
13 7 mpondm0 ¬ X Vtx G 0 0 X ClWWalksNOn G 0 =
14 12 13 pm2.61i X ClWWalksNOn G 0 =