Metamath Proof Explorer


Theorem clwwlk1loop

Description: A closed walk of length 1 is a loop. See also clwlkl1loop . (Contributed by AV, 24-Apr-2021)

Ref Expression
Assertion clwwlk1loop W ClWWalks G W = 1 W 0 W 0 Edg G

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid Edg G = Edg G
3 1 2 isclwwlk W ClWWalks G W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G
4 lsw1 W Word Vtx G W = 1 lastS W = W 0
5 4 preq1d W Word Vtx G W = 1 lastS W W 0 = W 0 W 0
6 5 eleq1d W Word Vtx G W = 1 lastS W W 0 Edg G W 0 W 0 Edg G
7 6 biimpd W Word Vtx G W = 1 lastS W W 0 Edg G W 0 W 0 Edg G
8 7 ex W Word Vtx G W = 1 lastS W W 0 Edg G W 0 W 0 Edg G
9 8 com23 W Word Vtx G lastS W W 0 Edg G W = 1 W 0 W 0 Edg G
10 9 adantr W Word Vtx G W lastS W W 0 Edg G W = 1 W 0 W 0 Edg G
11 10 imp W Word Vtx G W lastS W W 0 Edg G W = 1 W 0 W 0 Edg G
12 11 3adant2 W Word Vtx G W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G W = 1 W 0 W 0 Edg G
13 3 12 sylbi W ClWWalks G W = 1 W 0 W 0 Edg G
14 13 imp W ClWWalks G W = 1 W 0 W 0 Edg G