Metamath Proof Explorer


Theorem clwwlkbp

Description: Basic properties of a closed walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 15-Mar-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Hypothesis clwwlkbp.v V = Vtx G
Assertion clwwlkbp W ClWWalks G G V W Word V W

Proof

Step Hyp Ref Expression
1 clwwlkbp.v V = Vtx G
2 elfvex W ClWWalks G G V
3 eqid Edg G = Edg G
4 1 3 isclwwlk W ClWWalks G W Word V W i 0 ..^ W 1 W i W i + 1 Edg G lastS W W 0 Edg G
5 4 simp1bi W ClWWalks G W Word V W
6 3anass G V W Word V W G V W Word V W
7 2 5 6 sylanbrc W ClWWalks G G V W Word V W