Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l |
|
2 |
|
simp1l |
|
3 |
|
ccatcl |
|
4 |
1 2 3
|
syl2an |
|
5 |
|
ccat0 |
|
6 |
5
|
adantlr |
|
7 |
|
simpr |
|
8 |
6 7
|
syl6bi |
|
9 |
8
|
necon3d |
|
10 |
9
|
impr |
|
11 |
10
|
3ad2antr1 |
|
12 |
11
|
3ad2antl1 |
|
13 |
4 12
|
jca |
|
14 |
13
|
3adant3 |
|
15 |
|
clwwlkccatlem |
|
16 |
|
simpl1l |
|
17 |
|
simpr1l |
|
18 |
|
simpr1r |
|
19 |
|
lswccatn0lsw |
|
20 |
16 17 18 19
|
syl3anc |
|
21 |
20
|
3adant3 |
|
22 |
|
hashgt0 |
|
23 |
22
|
3ad2ant1 |
|
24 |
23
|
adantr |
|
25 |
|
ccatfv0 |
|
26 |
16 17 24 25
|
syl3anc |
|
27 |
26
|
3adant3 |
|
28 |
|
simp3 |
|
29 |
27 28
|
eqtrd |
|
30 |
21 29
|
preq12d |
|
31 |
|
simp23 |
|
32 |
30 31
|
eqeltrd |
|
33 |
14 15 32
|
3jca |
|
34 |
|
eqid |
|
35 |
|
eqid |
|
36 |
34 35
|
isclwwlk |
|
37 |
34 35
|
isclwwlk |
|
38 |
|
biid |
|
39 |
36 37 38
|
3anbi123i |
|
40 |
34 35
|
isclwwlk |
|
41 |
33 39 40
|
3imtr4i |
|