Metamath Proof Explorer


Theorem clwwlkccatlem

Description: Lemma for clwwlkccat : index j is shifted up by ( #A ) , and the case i = ( ( #A ) - 1 ) is covered by the "bridge" { ( lastSA ) , ( B0 ) } = { ( lastSA ) , ( A0 ) } e. ( EdgG ) . (Contributed by AV, 23-Apr-2022)

Ref Expression
Assertion clwwlkccatlem A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 i 0 ..^ A ++ B 1 A ++ B i A ++ B i + 1 Edg G

Proof

Step Hyp Ref Expression
1 simplll A Word Vtx G A B Word Vtx G i 0 ..^ A 1 A Word Vtx G
2 simplr A Word Vtx G A B Word Vtx G i 0 ..^ A 1 B Word Vtx G
3 lencl A Word Vtx G A 0
4 3 nn0zd A Word Vtx G A
5 fzossrbm1 A 0 ..^ A 1 0 ..^ A
6 4 5 syl A Word Vtx G 0 ..^ A 1 0 ..^ A
7 6 ad2antrr A Word Vtx G A B Word Vtx G 0 ..^ A 1 0 ..^ A
8 7 sselda A Word Vtx G A B Word Vtx G i 0 ..^ A 1 i 0 ..^ A
9 ccatval1 A Word Vtx G B Word Vtx G i 0 ..^ A A ++ B i = A i
10 1 2 8 9 syl3anc A Word Vtx G A B Word Vtx G i 0 ..^ A 1 A ++ B i = A i
11 4 ad2antrr A Word Vtx G A B Word Vtx G A
12 elfzom1elp1fzo A i 0 ..^ A 1 i + 1 0 ..^ A
13 11 12 sylan A Word Vtx G A B Word Vtx G i 0 ..^ A 1 i + 1 0 ..^ A
14 ccatval1 A Word Vtx G B Word Vtx G i + 1 0 ..^ A A ++ B i + 1 = A i + 1
15 1 2 13 14 syl3anc A Word Vtx G A B Word Vtx G i 0 ..^ A 1 A ++ B i + 1 = A i + 1
16 10 15 preq12d A Word Vtx G A B Word Vtx G i 0 ..^ A 1 A ++ B i A ++ B i + 1 = A i A i + 1
17 16 eleq1d A Word Vtx G A B Word Vtx G i 0 ..^ A 1 A ++ B i A ++ B i + 1 Edg G A i A i + 1 Edg G
18 17 biimprd A Word Vtx G A B Word Vtx G i 0 ..^ A 1 A i A i + 1 Edg G A ++ B i A ++ B i + 1 Edg G
19 18 ralimdva A Word Vtx G A B Word Vtx G i 0 ..^ A 1 A i A i + 1 Edg G i 0 ..^ A 1 A ++ B i A ++ B i + 1 Edg G
20 19 impancom A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G B Word Vtx G i 0 ..^ A 1 A ++ B i A ++ B i + 1 Edg G
21 20 3adant3 A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G i 0 ..^ A 1 A ++ B i A ++ B i + 1 Edg G
22 21 com12 B Word Vtx G A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G i 0 ..^ A 1 A ++ B i A ++ B i + 1 Edg G
23 22 adantr B Word Vtx G B A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G i 0 ..^ A 1 A ++ B i A ++ B i + 1 Edg G
24 23 3ad2ant1 B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G i 0 ..^ A 1 A ++ B i A ++ B i + 1 Edg G
25 24 impcom A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G i 0 ..^ A 1 A ++ B i A ++ B i + 1 Edg G
26 25 3adant3 A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 i 0 ..^ A 1 A ++ B i A ++ B i + 1 Edg G
27 simprl B Word Vtx G B A Word Vtx G A A Word Vtx G
28 simpll B Word Vtx G B A Word Vtx G A B Word Vtx G
29 simprr B Word Vtx G B A Word Vtx G A A
30 ccatval1lsw A Word Vtx G B Word Vtx G A A ++ B A 1 = lastS A
31 27 28 29 30 syl3anc B Word Vtx G B A Word Vtx G A A ++ B A 1 = lastS A
32 31 adantr B Word Vtx G B A Word Vtx G A A 0 = B 0 A ++ B A 1 = lastS A
33 3 nn0cnd A Word Vtx G A
34 npcan1 A A - 1 + 1 = A
35 33 34 syl A Word Vtx G A - 1 + 1 = A
36 35 ad2antrl B Word Vtx G B A Word Vtx G A A - 1 + 1 = A
37 36 fveq2d B Word Vtx G B A Word Vtx G A A ++ B A - 1 + 1 = A ++ B A
38 simplr B Word Vtx G B A Word Vtx G A B
39 ccatval21sw A Word Vtx G B Word Vtx G B A ++ B A = B 0
40 27 28 38 39 syl3anc B Word Vtx G B A Word Vtx G A A ++ B A = B 0
41 37 40 eqtrd B Word Vtx G B A Word Vtx G A A ++ B A - 1 + 1 = B 0
42 41 adantr B Word Vtx G B A Word Vtx G A A 0 = B 0 A ++ B A - 1 + 1 = B 0
43 simpr B Word Vtx G B A Word Vtx G A A 0 = B 0 A 0 = B 0
44 42 43 eqtr4d B Word Vtx G B A Word Vtx G A A 0 = B 0 A ++ B A - 1 + 1 = A 0
45 32 44 preq12d B Word Vtx G B A Word Vtx G A A 0 = B 0 A ++ B A 1 A ++ B A - 1 + 1 = lastS A A 0
46 45 eleq1d B Word Vtx G B A Word Vtx G A A 0 = B 0 A ++ B A 1 A ++ B A - 1 + 1 Edg G lastS A A 0 Edg G
47 46 exbiri B Word Vtx G B A Word Vtx G A A 0 = B 0 lastS A A 0 Edg G A ++ B A 1 A ++ B A - 1 + 1 Edg G
48 47 com23 B Word Vtx G B A Word Vtx G A lastS A A 0 Edg G A 0 = B 0 A ++ B A 1 A ++ B A - 1 + 1 Edg G
49 48 expimpd B Word Vtx G B A Word Vtx G A lastS A A 0 Edg G A 0 = B 0 A ++ B A 1 A ++ B A - 1 + 1 Edg G
50 49 3ad2ant1 B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A Word Vtx G A lastS A A 0 Edg G A 0 = B 0 A ++ B A 1 A ++ B A - 1 + 1 Edg G
51 50 com12 A Word Vtx G A lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 A ++ B A 1 A ++ B A - 1 + 1 Edg G
52 51 3adant2 A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 A ++ B A 1 A ++ B A - 1 + 1 Edg G
53 52 3imp A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 A ++ B A 1 A ++ B A - 1 + 1 Edg G
54 ralunb i 0 ..^ A 1 A 1 A ++ B i A ++ B i + 1 Edg G i 0 ..^ A 1 A ++ B i A ++ B i + 1 Edg G i A 1 A ++ B i A ++ B i + 1 Edg G
55 ovex A 1 V
56 fveq2 i = A 1 A ++ B i = A ++ B A 1
57 fvoveq1 i = A 1 A ++ B i + 1 = A ++ B A - 1 + 1
58 56 57 preq12d i = A 1 A ++ B i A ++ B i + 1 = A ++ B A 1 A ++ B A - 1 + 1
59 58 eleq1d i = A 1 A ++ B i A ++ B i + 1 Edg G A ++ B A 1 A ++ B A - 1 + 1 Edg G
60 55 59 ralsn i A 1 A ++ B i A ++ B i + 1 Edg G A ++ B A 1 A ++ B A - 1 + 1 Edg G
61 60 anbi2i i 0 ..^ A 1 A ++ B i A ++ B i + 1 Edg G i A 1 A ++ B i A ++ B i + 1 Edg G i 0 ..^ A 1 A ++ B i A ++ B i + 1 Edg G A ++ B A 1 A ++ B A - 1 + 1 Edg G
62 54 61 bitri i 0 ..^ A 1 A 1 A ++ B i A ++ B i + 1 Edg G i 0 ..^ A 1 A ++ B i A ++ B i + 1 Edg G A ++ B A 1 A ++ B A - 1 + 1 Edg G
63 26 53 62 sylanbrc A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 i 0 ..^ A 1 A 1 A ++ B i A ++ B i + 1 Edg G
64 0z 0
65 lennncl A Word Vtx G A A
66 0p1e1 0 + 1 = 1
67 66 fveq2i 0 + 1 = 1
68 67 eleq2i A 0 + 1 A 1
69 elnnuz A A 1
70 68 69 bitr4i A 0 + 1 A
71 65 70 sylibr A Word Vtx G A A 0 + 1
72 fzosplitsnm1 0 A 0 + 1 0 ..^ A = 0 ..^ A 1 A 1
73 64 71 72 sylancr A Word Vtx G A 0 ..^ A = 0 ..^ A 1 A 1
74 73 raleqdv A Word Vtx G A i 0 ..^ A A ++ B i A ++ B i + 1 Edg G i 0 ..^ A 1 A 1 A ++ B i A ++ B i + 1 Edg G
75 74 3ad2ant1 A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G i 0 ..^ A A ++ B i A ++ B i + 1 Edg G i 0 ..^ A 1 A 1 A ++ B i A ++ B i + 1 Edg G
76 75 3ad2ant1 A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 i 0 ..^ A A ++ B i A ++ B i + 1 Edg G i 0 ..^ A 1 A 1 A ++ B i A ++ B i + 1 Edg G
77 63 76 mpbird A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 i 0 ..^ A A ++ B i A ++ B i + 1 Edg G
78 lencl B Word Vtx G B 0
79 78 nn0zd B Word Vtx G B
80 peano2zm B B 1
81 79 80 syl B Word Vtx G B 1
82 81 ad2antrl A Word Vtx G A B Word Vtx G B B 1
83 82 adantr A Word Vtx G A B Word Vtx G B A 0 = B 0 B 1
84 83 anim1ci A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 i A ..^ A + B - 1 B 1
85 fzosubel3 i A ..^ A + B - 1 B 1 i A 0 ..^ B 1
86 fveq2 j = i A B j = B i A
87 fvoveq1 j = i A B j + 1 = B i - A + 1
88 86 87 preq12d j = i A B j B j + 1 = B i A B i - A + 1
89 88 eleq1d j = i A B j B j + 1 Edg G B i A B i - A + 1 Edg G
90 89 rspcv i A 0 ..^ B 1 j 0 ..^ B 1 B j B j + 1 Edg G B i A B i - A + 1 Edg G
91 84 85 90 3syl A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 j 0 ..^ B 1 B j B j + 1 Edg G B i A B i - A + 1 Edg G
92 simp-4l A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 A Word Vtx G
93 simprl A Word Vtx G A B Word Vtx G B B Word Vtx G
94 93 ad2antrr A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 B Word Vtx G
95 3 adantr A Word Vtx G A A 0
96 78 adantr B Word Vtx G B B 0
97 nn0addcl A 0 B 0 A + B 0
98 97 nn0zd A 0 B 0 A + B
99 95 96 98 syl2an A Word Vtx G A B Word Vtx G B A + B
100 1nn0 1 0
101 eluzmn A + B 1 0 A + B A + B - 1
102 99 100 101 sylancl A Word Vtx G A B Word Vtx G B A + B A + B - 1
103 33 ad2antrr A Word Vtx G A B Word Vtx G B A
104 78 nn0cnd B Word Vtx G B
105 104 ad2antrl A Word Vtx G A B Word Vtx G B B
106 1cnd A Word Vtx G A B Word Vtx G B 1
107 103 105 106 addsubassd A Word Vtx G A B Word Vtx G B A + B - 1 = A + B - 1
108 107 fveq2d A Word Vtx G A B Word Vtx G B A + B - 1 = A + B - 1
109 102 108 eleqtrd A Word Vtx G A B Word Vtx G B A + B A + B - 1
110 fzoss2 A + B A + B - 1 A ..^ A + B - 1 A ..^ A + B
111 109 110 syl A Word Vtx G A B Word Vtx G B A ..^ A + B - 1 A ..^ A + B
112 111 adantr A Word Vtx G A B Word Vtx G B A 0 = B 0 A ..^ A + B - 1 A ..^ A + B
113 112 sselda A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 i A ..^ A + B
114 ccatval2 A Word Vtx G B Word Vtx G i A ..^ A + B A ++ B i = B i A
115 92 94 113 114 syl3anc A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 A ++ B i = B i A
116 107 oveq2d A Word Vtx G A B Word Vtx G B A ..^ A + B - 1 = A ..^ A + B - 1
117 116 eleq2d A Word Vtx G A B Word Vtx G B i A ..^ A + B - 1 i A ..^ A + B - 1
118 117 adantr A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 i A ..^ A + B - 1
119 eluzmn A 1 0 A A 1
120 4 100 119 sylancl A Word Vtx G A A 1
121 120 ad3antrrr A Word Vtx G A B Word Vtx G B A 0 = B 0 A A 1
122 fzoss1 A A 1 A ..^ A + B - 1 A 1 ..^ A + B - 1
123 121 122 syl A Word Vtx G A B Word Vtx G B A 0 = B 0 A ..^ A + B - 1 A 1 ..^ A + B - 1
124 123 sseld A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 i A 1 ..^ A + B - 1
125 118 124 sylbird A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 i A 1 ..^ A + B - 1
126 125 imp A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 i A 1 ..^ A + B - 1
127 4 adantr A Word Vtx G A A
128 79 adantr B Word Vtx G B B
129 simpl A B A
130 zaddcl A B A + B
131 129 130 jca A B A A + B
132 127 128 131 syl2an A Word Vtx G A B Word Vtx G B A A + B
133 132 adantr A Word Vtx G A B Word Vtx G B A 0 = B 0 A A + B
134 elfzoelz i A ..^ A + B - 1 i
135 1zzd i A ..^ A + B - 1 1
136 134 135 jca i A ..^ A + B - 1 i 1
137 elfzomelpfzo A A + B i 1 i A 1 ..^ A + B - 1 i + 1 A ..^ A + B
138 133 136 137 syl2an A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 i A 1 ..^ A + B - 1 i + 1 A ..^ A + B
139 126 138 mpbid A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 i + 1 A ..^ A + B
140 ccatval2 A Word Vtx G B Word Vtx G i + 1 A ..^ A + B A ++ B i + 1 = B i + 1 - A
141 92 94 139 140 syl3anc A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 A ++ B i + 1 = B i + 1 - A
142 134 zcnd i A ..^ A + B - 1 i
143 142 adantl A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 i
144 1cnd A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 1
145 103 ad2antrr A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 A
146 143 144 145 addsubd A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 i + 1 - A = i - A + 1
147 146 fveq2d A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 B i + 1 - A = B i - A + 1
148 141 147 eqtrd A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 A ++ B i + 1 = B i - A + 1
149 115 148 preq12d A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 A ++ B i A ++ B i + 1 = B i A B i - A + 1
150 149 eleq1d A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G B i A B i - A + 1 Edg G
151 91 150 sylibrd A Word Vtx G A B Word Vtx G B A 0 = B 0 i A ..^ A + B - 1 j 0 ..^ B 1 B j B j + 1 Edg G A ++ B i A ++ B i + 1 Edg G
152 151 impancom A Word Vtx G A B Word Vtx G B A 0 = B 0 j 0 ..^ B 1 B j B j + 1 Edg G i A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
153 152 ralrimiv A Word Vtx G A B Word Vtx G B A 0 = B 0 j 0 ..^ B 1 B j B j + 1 Edg G i A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
154 153 exp31 A Word Vtx G A B Word Vtx G B A 0 = B 0 j 0 ..^ B 1 B j B j + 1 Edg G i A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
155 154 expcom B Word Vtx G B A Word Vtx G A A 0 = B 0 j 0 ..^ B 1 B j B j + 1 Edg G i A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
156 155 com23 B Word Vtx G B A 0 = B 0 A Word Vtx G A j 0 ..^ B 1 B j B j + 1 Edg G i A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
157 156 com24 B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G A Word Vtx G A A 0 = B 0 i A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
158 157 imp B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G A Word Vtx G A A 0 = B 0 i A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
159 158 3adant3 B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A Word Vtx G A A 0 = B 0 i A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
160 159 com12 A Word Vtx G A B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 i A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
161 160 3ad2ant1 A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 i A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
162 161 3imp A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 i A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
163 ralunb i 0 ..^ A A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G i 0 ..^ A A ++ B i A ++ B i + 1 Edg G i A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
164 77 162 163 sylanbrc A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 i 0 ..^ A A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
165 ccatlen A Word Vtx G B Word Vtx G A ++ B = A + B
166 165 oveq1d A Word Vtx G B Word Vtx G A ++ B 1 = A + B - 1
167 166 ad2ant2r A Word Vtx G A B Word Vtx G B A ++ B 1 = A + B - 1
168 167 107 eqtrd A Word Vtx G A B Word Vtx G B A ++ B 1 = A + B - 1
169 168 oveq2d A Word Vtx G A B Word Vtx G B 0 ..^ A ++ B 1 = 0 ..^ A + B - 1
170 elnn0uz A 0 A 0
171 3 170 sylib A Word Vtx G A 0
172 171 adantr A Word Vtx G A A 0
173 lennncl B Word Vtx G B B
174 nnm1nn0 B B 1 0
175 173 174 syl B Word Vtx G B B 1 0
176 fzoun A 0 B 1 0 0 ..^ A + B - 1 = 0 ..^ A A ..^ A + B - 1
177 172 175 176 syl2an A Word Vtx G A B Word Vtx G B 0 ..^ A + B - 1 = 0 ..^ A A ..^ A + B - 1
178 169 177 eqtrd A Word Vtx G A B Word Vtx G B 0 ..^ A ++ B 1 = 0 ..^ A A ..^ A + B - 1
179 178 3ad2antr1 A Word Vtx G A B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G 0 ..^ A ++ B 1 = 0 ..^ A A ..^ A + B - 1
180 179 3ad2antl1 A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G 0 ..^ A ++ B 1 = 0 ..^ A A ..^ A + B - 1
181 180 3adant3 A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 0 ..^ A ++ B 1 = 0 ..^ A A ..^ A + B - 1
182 181 raleqdv A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 i 0 ..^ A ++ B 1 A ++ B i A ++ B i + 1 Edg G i 0 ..^ A A ..^ A + B - 1 A ++ B i A ++ B i + 1 Edg G
183 164 182 mpbird A Word Vtx G A i 0 ..^ A 1 A i A i + 1 Edg G lastS A A 0 Edg G B Word Vtx G B j 0 ..^ B 1 B j B j + 1 Edg G lastS B B 0 Edg G A 0 = B 0 i 0 ..^ A ++ B 1 A ++ B i A ++ B i + 1 Edg G