Database
GRAPH THEORY
Walks, paths and cycles
Closed walks as words
Closed walks of a fixed length as words
clwwlkfv
Metamath Proof Explorer
Description: Lemma 2 for clwwlkf1o : the value of function F . (Contributed by Alexander van der Vekens , 28-Sep-2018) (Revised by AV , 26-Apr-2021)
(Revised by AV , 1-Nov-2022)
Ref
Expression
Hypotheses
clwwlkf1o.d
⊢ D = w ∈ N WWalksN G | lastS ⁡ w = w ⁡ 0
clwwlkf1o.f
⊢ F = t ∈ D ⟼ t prefix N
Assertion
clwwlkfv
⊢ W ∈ D → F ⁡ W = W prefix N
Proof
Step
Hyp
Ref
Expression
1
clwwlkf1o.d
⊢ D = w ∈ N WWalksN G | lastS ⁡ w = w ⁡ 0
2
clwwlkf1o.f
⊢ F = t ∈ D ⟼ t prefix N
3
oveq1
⊢ t = W → t prefix N = W prefix N
4
ovex
⊢ W prefix N ∈ V
5
3 2 4
fvmpt
⊢ W ∈ D → F ⁡ W = W prefix N