Metamath Proof Explorer


Theorem clwwlkgt0

Description: There is no empty closed walk (i.e. a closed walk without any edge) represented by a word of vertices. (Contributed by Alexander van der Vekens, 15-Sep-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Assertion clwwlkgt0 W ClWWalks G 0 < W

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 clwwlkbp W ClWWalks G G V W Word Vtx G W
3 hashgt0 W Word Vtx G W 0 < W
4 3 3adant1 G V W Word Vtx G W 0 < W
5 2 4 syl W ClWWalks G 0 < W