Metamath Proof Explorer


Theorem clwwlknclwwlkdif

Description: The set A of walks of length N starting with a fixed vertex V and ending not at this vertex is the difference between the set C of walks of length N starting with this vertex X and the set B of closed walks of length N anchored at this vertex X . (Contributed by Alexander van der Vekens, 30-Sep-2018) (Revised by AV, 7-May-2021) (Revised by AV, 16-Mar-2022)

Ref Expression
Hypotheses clwwlknclwwlkdif.a A=wNWWalksNG|w0=XlastSwX
clwwlknclwwlkdif.b B=XNWWalksNOnGX
clwwlknclwwlkdif.c C=wNWWalksNG|w0=X
Assertion clwwlknclwwlkdif A=CB

Proof

Step Hyp Ref Expression
1 clwwlknclwwlkdif.a A=wNWWalksNG|w0=XlastSwX
2 clwwlknclwwlkdif.b B=XNWWalksNOnGX
3 clwwlknclwwlkdif.c C=wNWWalksNG|w0=X
4 eqid VtxG=VtxG
5 4 iswwlksnon XNWWalksNOnGX=wNWWalksNG|w0=XwN=X
6 2 5 eqtri B=wNWWalksNG|w0=XwN=X
7 3 6 difeq12i CB=wNWWalksNG|w0=XwNWWalksNG|w0=XwN=X
8 difrab wNWWalksNG|w0=XwNWWalksNG|w0=XwN=X=wNWWalksNG|w0=X¬w0=XwN=X
9 annotanannot w0=X¬w0=XwN=Xw0=X¬wN=X
10 df-ne wNX¬wN=X
11 wwlknlsw wNWWalksNGwN=lastSw
12 11 neeq1d wNWWalksNGwNXlastSwX
13 10 12 bitr3id wNWWalksNG¬wN=XlastSwX
14 13 anbi2d wNWWalksNGw0=X¬wN=Xw0=XlastSwX
15 9 14 bitrid wNWWalksNGw0=X¬w0=XwN=Xw0=XlastSwX
16 15 rabbiia wNWWalksNG|w0=X¬w0=XwN=X=wNWWalksNG|w0=XlastSwX
17 7 8 16 3eqtrri wNWWalksNG|w0=XlastSwX=CB
18 1 17 eqtri A=CB