Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknon1.v |
|
2 |
|
clwwlknon1.c |
|
3 |
|
clwwlknon1.e |
|
4 |
2
|
oveqi |
|
5 |
4
|
a1i |
|
6 |
|
clwwlknon |
|
7 |
6
|
a1i |
|
8 |
|
clwwlkn1 |
|
9 |
8
|
anbi1i |
|
10 |
1
|
eqcomi |
|
11 |
10
|
wrdeqi |
|
12 |
11
|
eleq2i |
|
13 |
12
|
biimpi |
|
14 |
13
|
3ad2ant2 |
|
15 |
14
|
ad2antrl |
|
16 |
14
|
adantr |
|
17 |
|
simpl1 |
|
18 |
|
simpr |
|
19 |
16 17 18
|
3jca |
|
20 |
19
|
adantl |
|
21 |
|
wrdl1s1 |
|
22 |
21
|
adantr |
|
23 |
20 22
|
mpbird |
|
24 |
|
sneq |
|
25 |
3
|
eqcomi |
|
26 |
25
|
a1i |
|
27 |
24 26
|
eleq12d |
|
28 |
27
|
biimpd |
|
29 |
28
|
a1i |
|
30 |
29
|
com13 |
|
31 |
30
|
3ad2ant3 |
|
32 |
31
|
imp |
|
33 |
32
|
impcom |
|
34 |
15 23 33
|
jca32 |
|
35 |
|
fveq2 |
|
36 |
|
s1len |
|
37 |
35 36
|
eqtrdi |
|
38 |
37
|
ad2antrl |
|
39 |
38
|
adantl |
|
40 |
1
|
wrdeqi |
|
41 |
40
|
eleq2i |
|
42 |
41
|
biimpi |
|
43 |
42
|
ad2antrl |
|
44 |
|
fveq1 |
|
45 |
|
s1fv |
|
46 |
44 45
|
sylan9eq |
|
47 |
46
|
eqcomd |
|
48 |
47
|
sneqd |
|
49 |
3
|
a1i |
|
50 |
48 49
|
eleq12d |
|
51 |
50
|
biimpd |
|
52 |
51
|
impancom |
|
53 |
52
|
adantl |
|
54 |
53
|
impcom |
|
55 |
39 43 54
|
3jca |
|
56 |
46
|
ex |
|
57 |
56
|
ad2antrl |
|
58 |
57
|
impcom |
|
59 |
55 58
|
jca |
|
60 |
34 59
|
impbida |
|
61 |
9 60
|
syl5bb |
|
62 |
61
|
rabbidva2 |
|
63 |
5 7 62
|
3eqtrd |
|