Metamath Proof Explorer


Theorem clwwlknon1

Description: The set of closed walks on vertex X of length 1 in a graph G as words over the set of vertices. (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Feb-2022) (Proof shortened by AV, 24-Mar-2022)

Ref Expression
Hypotheses clwwlknon1.v V = Vtx G
clwwlknon1.c C = ClWWalksNOn G
clwwlknon1.e E = Edg G
Assertion clwwlknon1 X V X C 1 = w Word V | w = ⟨“ X ”⟩ X E

Proof

Step Hyp Ref Expression
1 clwwlknon1.v V = Vtx G
2 clwwlknon1.c C = ClWWalksNOn G
3 clwwlknon1.e E = Edg G
4 2 oveqi X C 1 = X ClWWalksNOn G 1
5 4 a1i X V X C 1 = X ClWWalksNOn G 1
6 clwwlknon X ClWWalksNOn G 1 = w 1 ClWWalksN G | w 0 = X
7 6 a1i X V X ClWWalksNOn G 1 = w 1 ClWWalksN G | w 0 = X
8 clwwlkn1 w 1 ClWWalksN G w = 1 w Word Vtx G w 0 Edg G
9 8 anbi1i w 1 ClWWalksN G w 0 = X w = 1 w Word Vtx G w 0 Edg G w 0 = X
10 1 eqcomi Vtx G = V
11 10 wrdeqi Word Vtx G = Word V
12 11 eleq2i w Word Vtx G w Word V
13 12 biimpi w Word Vtx G w Word V
14 13 3ad2ant2 w = 1 w Word Vtx G w 0 Edg G w Word V
15 14 ad2antrl X V w = 1 w Word Vtx G w 0 Edg G w 0 = X w Word V
16 14 adantr w = 1 w Word Vtx G w 0 Edg G w 0 = X w Word V
17 simpl1 w = 1 w Word Vtx G w 0 Edg G w 0 = X w = 1
18 simpr w = 1 w Word Vtx G w 0 Edg G w 0 = X w 0 = X
19 16 17 18 3jca w = 1 w Word Vtx G w 0 Edg G w 0 = X w Word V w = 1 w 0 = X
20 19 adantl X V w = 1 w Word Vtx G w 0 Edg G w 0 = X w Word V w = 1 w 0 = X
21 wrdl1s1 X V w = ⟨“ X ”⟩ w Word V w = 1 w 0 = X
22 21 adantr X V w = 1 w Word Vtx G w 0 Edg G w 0 = X w = ⟨“ X ”⟩ w Word V w = 1 w 0 = X
23 20 22 mpbird X V w = 1 w Word Vtx G w 0 Edg G w 0 = X w = ⟨“ X ”⟩
24 sneq w 0 = X w 0 = X
25 3 eqcomi Edg G = E
26 25 a1i w 0 = X Edg G = E
27 24 26 eleq12d w 0 = X w 0 Edg G X E
28 27 biimpd w 0 = X w 0 Edg G X E
29 28 a1i X V w 0 = X w 0 Edg G X E
30 29 com13 w 0 Edg G w 0 = X X V X E
31 30 3ad2ant3 w = 1 w Word Vtx G w 0 Edg G w 0 = X X V X E
32 31 imp w = 1 w Word Vtx G w 0 Edg G w 0 = X X V X E
33 32 impcom X V w = 1 w Word Vtx G w 0 Edg G w 0 = X X E
34 15 23 33 jca32 X V w = 1 w Word Vtx G w 0 Edg G w 0 = X w Word V w = ⟨“ X ”⟩ X E
35 fveq2 w = ⟨“ X ”⟩ w = ⟨“ X ”⟩
36 s1len ⟨“ X ”⟩ = 1
37 35 36 eqtrdi w = ⟨“ X ”⟩ w = 1
38 37 ad2antrl w Word V w = ⟨“ X ”⟩ X E w = 1
39 38 adantl X V w Word V w = ⟨“ X ”⟩ X E w = 1
40 1 wrdeqi Word V = Word Vtx G
41 40 eleq2i w Word V w Word Vtx G
42 41 biimpi w Word V w Word Vtx G
43 42 ad2antrl X V w Word V w = ⟨“ X ”⟩ X E w Word Vtx G
44 fveq1 w = ⟨“ X ”⟩ w 0 = ⟨“ X ”⟩ 0
45 s1fv X V ⟨“ X ”⟩ 0 = X
46 44 45 sylan9eq w = ⟨“ X ”⟩ X V w 0 = X
47 46 eqcomd w = ⟨“ X ”⟩ X V X = w 0
48 47 sneqd w = ⟨“ X ”⟩ X V X = w 0
49 3 a1i w = ⟨“ X ”⟩ X V E = Edg G
50 48 49 eleq12d w = ⟨“ X ”⟩ X V X E w 0 Edg G
51 50 biimpd w = ⟨“ X ”⟩ X V X E w 0 Edg G
52 51 impancom w = ⟨“ X ”⟩ X E X V w 0 Edg G
53 52 adantl w Word V w = ⟨“ X ”⟩ X E X V w 0 Edg G
54 53 impcom X V w Word V w = ⟨“ X ”⟩ X E w 0 Edg G
55 39 43 54 3jca X V w Word V w = ⟨“ X ”⟩ X E w = 1 w Word Vtx G w 0 Edg G
56 46 ex w = ⟨“ X ”⟩ X V w 0 = X
57 56 ad2antrl w Word V w = ⟨“ X ”⟩ X E X V w 0 = X
58 57 impcom X V w Word V w = ⟨“ X ”⟩ X E w 0 = X
59 55 58 jca X V w Word V w = ⟨“ X ”⟩ X E w = 1 w Word Vtx G w 0 Edg G w 0 = X
60 34 59 impbida X V w = 1 w Word Vtx G w 0 Edg G w 0 = X w Word V w = ⟨“ X ”⟩ X E
61 9 60 syl5bb X V w 1 ClWWalksN G w 0 = X w Word V w = ⟨“ X ”⟩ X E
62 61 rabbidva2 X V w 1 ClWWalksN G | w 0 = X = w Word V | w = ⟨“ X ”⟩ X E
63 5 7 62 3eqtrd X V X C 1 = w Word V | w = ⟨“ X ”⟩ X E