Metamath Proof Explorer


Theorem clwwlknon1loop

Description: If there is a loop at vertex X , the set of (closed) walks on X of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of X . (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Feb-2022) (Proof shortened by AV, 25-Mar-2022)

Ref Expression
Hypotheses clwwlknon1.v V = Vtx G
clwwlknon1.c C = ClWWalksNOn G
clwwlknon1.e E = Edg G
Assertion clwwlknon1loop X V X E X C 1 = ⟨“ X ”⟩

Proof

Step Hyp Ref Expression
1 clwwlknon1.v V = Vtx G
2 clwwlknon1.c C = ClWWalksNOn G
3 clwwlknon1.e E = Edg G
4 simprl w Word V w = ⟨“ X ”⟩ X E w = ⟨“ X ”⟩
5 s1cl X V ⟨“ X ”⟩ Word V
6 5 adantr X V X E ⟨“ X ”⟩ Word V
7 6 adantr X V X E w = ⟨“ X ”⟩ ⟨“ X ”⟩ Word V
8 eleq1 w = ⟨“ X ”⟩ w Word V ⟨“ X ”⟩ Word V
9 8 adantl X V X E w = ⟨“ X ”⟩ w Word V ⟨“ X ”⟩ Word V
10 7 9 mpbird X V X E w = ⟨“ X ”⟩ w Word V
11 simpr X V X E X E
12 11 anim1ci X V X E w = ⟨“ X ”⟩ w = ⟨“ X ”⟩ X E
13 10 12 jca X V X E w = ⟨“ X ”⟩ w Word V w = ⟨“ X ”⟩ X E
14 13 ex X V X E w = ⟨“ X ”⟩ w Word V w = ⟨“ X ”⟩ X E
15 4 14 impbid2 X V X E w Word V w = ⟨“ X ”⟩ X E w = ⟨“ X ”⟩
16 15 alrimiv X V X E w w Word V w = ⟨“ X ”⟩ X E w = ⟨“ X ”⟩
17 1 2 3 clwwlknon1 X V X C 1 = w Word V | w = ⟨“ X ”⟩ X E
18 17 eqeq1d X V X C 1 = ⟨“ X ”⟩ w Word V | w = ⟨“ X ”⟩ X E = ⟨“ X ”⟩
19 18 adantr X V X E X C 1 = ⟨“ X ”⟩ w Word V | w = ⟨“ X ”⟩ X E = ⟨“ X ”⟩
20 rabeqsn w Word V | w = ⟨“ X ”⟩ X E = ⟨“ X ”⟩ w w Word V w = ⟨“ X ”⟩ X E w = ⟨“ X ”⟩
21 19 20 bitrdi X V X E X C 1 = ⟨“ X ”⟩ w w Word V w = ⟨“ X ”⟩ X E w = ⟨“ X ”⟩
22 16 21 mpbird X V X E X C 1 = ⟨“ X ”⟩