Metamath Proof Explorer


Theorem clwwlknon1sn

Description: The set of (closed) walks on vertex X of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of X iff there is a loop at X . (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Feb-2022)

Ref Expression
Hypotheses clwwlknon1.v V = Vtx G
clwwlknon1.c C = ClWWalksNOn G
clwwlknon1.e E = Edg G
Assertion clwwlknon1sn X V X C 1 = ⟨“ X ”⟩ X E

Proof

Step Hyp Ref Expression
1 clwwlknon1.v V = Vtx G
2 clwwlknon1.c C = ClWWalksNOn G
3 clwwlknon1.e E = Edg G
4 df-nel X E ¬ X E
5 1 2 3 clwwlknon1nloop X E X C 1 =
6 5 adantl X V X E X C 1 =
7 s1cli ⟨“ X ”⟩ Word V
8 7 elexi ⟨“ X ”⟩ V
9 8 snnz ⟨“ X ”⟩
10 9 nesymi ¬ = ⟨“ X ”⟩
11 eqeq1 X C 1 = X C 1 = ⟨“ X ”⟩ = ⟨“ X ”⟩
12 10 11 mtbiri X C 1 = ¬ X C 1 = ⟨“ X ”⟩
13 6 12 syl X V X E ¬ X C 1 = ⟨“ X ”⟩
14 13 ex X V X E ¬ X C 1 = ⟨“ X ”⟩
15 4 14 syl5bir X V ¬ X E ¬ X C 1 = ⟨“ X ”⟩
16 15 con4d X V X C 1 = ⟨“ X ”⟩ X E
17 1 2 3 clwwlknon1loop X V X E X C 1 = ⟨“ X ”⟩
18 17 ex X V X E X C 1 = ⟨“ X ”⟩
19 16 18 impbid X V X C 1 = ⟨“ X ”⟩ X E