Metamath Proof Explorer


Theorem clwwlknon2num

Description: In a K-regular graph G , there are K closed walks on vertex X of length 2 . (Contributed by Alexander van der Vekens, 19-Sep-2018) (Revised by AV, 28-May-2021) (Revised by AV, 25-Feb-2022) (Proof shortened by AV, 25-Mar-2022)

Ref Expression
Assertion clwwlknon2num G RegUSGraph K X Vtx G X ClWWalksNOn G 2 = K

Proof

Step Hyp Ref Expression
1 eqid ClWWalksNOn G = ClWWalksNOn G
2 eqid Vtx G = Vtx G
3 eqid Edg G = Edg G
4 1 2 3 clwwlknon2x X ClWWalksNOn G 2 = w Word Vtx G | w = 2 w 0 w 1 Edg G w 0 = X
5 4 a1i G RegUSGraph K X Vtx G X ClWWalksNOn G 2 = w Word Vtx G | w = 2 w 0 w 1 Edg G w 0 = X
6 5 fveq2d G RegUSGraph K X Vtx G X ClWWalksNOn G 2 = w Word Vtx G | w = 2 w 0 w 1 Edg G w 0 = X
7 3ancomb w = 2 w 0 = X w 0 w 1 Edg G w = 2 w 0 w 1 Edg G w 0 = X
8 7 rabbii w Word Vtx G | w = 2 w 0 = X w 0 w 1 Edg G = w Word Vtx G | w = 2 w 0 w 1 Edg G w 0 = X
9 8 fveq2i w Word Vtx G | w = 2 w 0 = X w 0 w 1 Edg G = w Word Vtx G | w = 2 w 0 w 1 Edg G w 0 = X
10 2 rusgrnumwrdl2 G RegUSGraph K X Vtx G w Word Vtx G | w = 2 w 0 = X w 0 w 1 Edg G = K
11 9 10 eqtr3id G RegUSGraph K X Vtx G w Word Vtx G | w = 2 w 0 w 1 Edg G w 0 = X = K
12 6 11 eqtrd G RegUSGraph K X Vtx G X ClWWalksNOn G 2 = K