Metamath Proof Explorer


Theorem clwwlknonccat

Description: The concatenation of two words representing closed walks on a vertex X represents a closed walk on vertex X . The resulting walk is a "double loop", starting at vertex X , coming back to X by the first walk, following the second walk and finally coming back to X again. (Contributed by AV, 24-Apr-2022)

Ref Expression
Assertion clwwlknonccat A X ClWWalksNOn G M B X ClWWalksNOn G N A ++ B X ClWWalksNOn G M + N

Proof

Step Hyp Ref Expression
1 simpl A M ClWWalksN G A 0 = X A M ClWWalksN G
2 1 adantr A M ClWWalksN G A 0 = X B N ClWWalksN G B 0 = X A M ClWWalksN G
3 simpl B N ClWWalksN G B 0 = X B N ClWWalksN G
4 3 adantl A M ClWWalksN G A 0 = X B N ClWWalksN G B 0 = X B N ClWWalksN G
5 simpr A M ClWWalksN G A 0 = X A 0 = X
6 5 adantr A M ClWWalksN G A 0 = X B N ClWWalksN G B 0 = X A 0 = X
7 simpr B N ClWWalksN G B 0 = X B 0 = X
8 7 eqcomd B N ClWWalksN G B 0 = X X = B 0
9 8 adantl A M ClWWalksN G A 0 = X B N ClWWalksN G B 0 = X X = B 0
10 6 9 eqtrd A M ClWWalksN G A 0 = X B N ClWWalksN G B 0 = X A 0 = B 0
11 clwwlknccat A M ClWWalksN G B N ClWWalksN G A 0 = B 0 A ++ B M + N ClWWalksN G
12 2 4 10 11 syl3anc A M ClWWalksN G A 0 = X B N ClWWalksN G B 0 = X A ++ B M + N ClWWalksN G
13 eqid Vtx G = Vtx G
14 13 clwwlknwrd A M ClWWalksN G A Word Vtx G
15 14 adantr A M ClWWalksN G A 0 = X A Word Vtx G
16 15 adantr A M ClWWalksN G A 0 = X B N ClWWalksN G B 0 = X A Word Vtx G
17 13 clwwlknwrd B N ClWWalksN G B Word Vtx G
18 17 adantr B N ClWWalksN G B 0 = X B Word Vtx G
19 18 adantl A M ClWWalksN G A 0 = X B N ClWWalksN G B 0 = X B Word Vtx G
20 clwwlknnn A M ClWWalksN G M
21 clwwlknlen A M ClWWalksN G A = M
22 nngt0 M 0 < M
23 breq2 A = M 0 < A 0 < M
24 22 23 syl5ibrcom M A = M 0 < A
25 20 21 24 sylc A M ClWWalksN G 0 < A
26 25 adantr A M ClWWalksN G A 0 = X 0 < A
27 26 adantr A M ClWWalksN G A 0 = X B N ClWWalksN G B 0 = X 0 < A
28 ccatfv0 A Word Vtx G B Word Vtx G 0 < A A ++ B 0 = A 0
29 16 19 27 28 syl3anc A M ClWWalksN G A 0 = X B N ClWWalksN G B 0 = X A ++ B 0 = A 0
30 29 6 eqtrd A M ClWWalksN G A 0 = X B N ClWWalksN G B 0 = X A ++ B 0 = X
31 12 30 jca A M ClWWalksN G A 0 = X B N ClWWalksN G B 0 = X A ++ B M + N ClWWalksN G A ++ B 0 = X
32 isclwwlknon A X ClWWalksNOn G M A M ClWWalksN G A 0 = X
33 isclwwlknon B X ClWWalksNOn G N B N ClWWalksN G B 0 = X
34 32 33 anbi12i A X ClWWalksNOn G M B X ClWWalksNOn G N A M ClWWalksN G A 0 = X B N ClWWalksN G B 0 = X
35 isclwwlknon A ++ B X ClWWalksNOn G M + N A ++ B M + N ClWWalksN G A ++ B 0 = X
36 31 34 35 3imtr4i A X ClWWalksNOn G M B X ClWWalksNOn G N A ++ B X ClWWalksNOn G M + N