Metamath Proof Explorer


Theorem clwwlknonclwlknonen

Description: The sets of the two representations of closed walks of a fixed positive length on a fixed vertex are equinumerous. (Contributed by AV, 27-May-2022) (Proof shortened by AV, 3-Nov-2022)

Ref Expression
Assertion clwwlknonclwlknonen G USHGraph X Vtx G N w ClWalks G | 1 st w = N 2 nd w 0 = X X ClWWalksNOn G N

Proof

Step Hyp Ref Expression
1 fvex ClWalks G V
2 1 rabex w ClWalks G | 1 st w = N 2 nd w 0 = X V
3 ovex X ClWWalksNOn G N V
4 eqid Vtx G = Vtx G
5 eqid w ClWalks G | 1 st w = N 2 nd w 0 = X = w ClWalks G | 1 st w = N 2 nd w 0 = X
6 eqid c w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd c prefix 1 st c = c w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd c prefix 1 st c
7 4 5 6 clwwlknonclwlknonf1o G USHGraph X Vtx G N c w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd c prefix 1 st c : w ClWalks G | 1 st w = N 2 nd w 0 = X 1-1 onto X ClWWalksNOn G N
8 f1oen2g w ClWalks G | 1 st w = N 2 nd w 0 = X V X ClWWalksNOn G N V c w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd c prefix 1 st c : w ClWalks G | 1 st w = N 2 nd w 0 = X 1-1 onto X ClWWalksNOn G N w ClWalks G | 1 st w = N 2 nd w 0 = X X ClWWalksNOn G N
9 2 3 7 8 mp3an12i G USHGraph X Vtx G N w ClWalks G | 1 st w = N 2 nd w 0 = X X ClWWalksNOn G N