| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlknonex2.v |
|
| 2 |
|
clwwlknonex2.e |
|
| 3 |
|
simpl |
|
| 4 |
3
|
adantr |
|
| 5 |
|
elfzonn0 |
|
| 6 |
5
|
adantl |
|
| 7 |
|
lencl |
|
| 8 |
|
elfzo0 |
|
| 9 |
|
nn0re |
|
| 10 |
9
|
adantr |
|
| 11 |
|
nn0re |
|
| 12 |
|
peano2rem |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
adantl |
|
| 15 |
11
|
adantl |
|
| 16 |
10 14 15
|
3jca |
|
| 17 |
11
|
ltm1d |
|
| 18 |
17
|
adantl |
|
| 19 |
|
lttr |
|
| 20 |
19
|
expcomd |
|
| 21 |
16 18 20
|
sylc |
|
| 22 |
21
|
impancom |
|
| 23 |
22
|
3adant2 |
|
| 24 |
8 23
|
sylbi |
|
| 25 |
7 24
|
syl5com |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
imp |
|
| 28 |
|
ccat2s1fvw |
|
| 29 |
4 6 27 28
|
syl3anc |
|
| 30 |
29
|
eqcomd |
|
| 31 |
|
peano2nn0 |
|
| 32 |
6 31
|
syl |
|
| 33 |
|
1red |
|
| 34 |
10 33 15
|
ltaddsubd |
|
| 35 |
34
|
biimprd |
|
| 36 |
35
|
impancom |
|
| 37 |
36
|
3adant2 |
|
| 38 |
8 37
|
sylbi |
|
| 39 |
7 38
|
mpan9 |
|
| 40 |
39
|
adantlr |
|
| 41 |
|
ccat2s1fvw |
|
| 42 |
4 32 40 41
|
syl3anc |
|
| 43 |
42
|
eqcomd |
|
| 44 |
30 43
|
preq12d |
|
| 45 |
44
|
eleq1d |
|
| 46 |
45
|
ralbidva |
|
| 47 |
46
|
biimpd |
|
| 48 |
47
|
impancom |
|
| 49 |
48
|
3adant3 |
|
| 50 |
49
|
3ad2ant1 |
|
| 51 |
50
|
com12 |
|
| 52 |
51
|
a1dd |
|
| 53 |
52
|
3adant3 |
|
| 54 |
53
|
imp31 |
|
| 55 |
|
ax-1 |
|
| 56 |
55
|
3adant3 |
|
| 57 |
|
simpl |
|
| 58 |
|
oveq1 |
|
| 59 |
58
|
adantr |
|
| 60 |
|
eluzelcn |
|
| 61 |
|
2cnd |
|
| 62 |
|
1cnd |
|
| 63 |
60 61 62
|
subsub4d |
|
| 64 |
|
2p1e3 |
|
| 65 |
64
|
a1i |
|
| 66 |
65
|
oveq2d |
|
| 67 |
|
uznn0sub |
|
| 68 |
66 67
|
eqeltrd |
|
| 69 |
63 68
|
eqeltrd |
|
| 70 |
69
|
adantl |
|
| 71 |
59 70
|
eqeltrd |
|
| 72 |
71
|
ancoms |
|
| 73 |
72
|
adantl |
|
| 74 |
7 11
|
syl |
|
| 75 |
74
|
adantr |
|
| 76 |
75
|
ltm1d |
|
| 77 |
57 73 76
|
3jca |
|
| 78 |
77
|
ex |
|
| 79 |
78
|
adantr |
|
| 80 |
79
|
3ad2ant1 |
|
| 81 |
80
|
imp |
|
| 82 |
|
ccat2s1fvw |
|
| 83 |
81 82
|
syl |
|
| 84 |
|
nn0cn |
|
| 85 |
|
ax-1cn |
|
| 86 |
|
npcan |
|
| 87 |
84 85 86
|
sylancl |
|
| 88 |
7 87
|
syl |
|
| 89 |
88
|
adantr |
|
| 90 |
89
|
3ad2ant1 |
|
| 91 |
90
|
fveq2d |
|
| 92 |
|
simp1l |
|
| 93 |
|
eqidd |
|
| 94 |
|
simp2l |
|
| 95 |
|
ccatw2s1p1 |
|
| 96 |
92 93 94 95
|
syl3anc |
|
| 97 |
91 96
|
eqtrd |
|
| 98 |
97
|
adantr |
|
| 99 |
83 98
|
preq12d |
|
| 100 |
|
lsw |
|
| 101 |
100
|
adantl |
|
| 102 |
|
simpl |
|
| 103 |
101 102
|
preq12d |
|
| 104 |
103
|
eleq1d |
|
| 105 |
104
|
biimpd |
|
| 106 |
105
|
expcom |
|
| 107 |
106
|
com23 |
|
| 108 |
107
|
imp31 |
|
| 109 |
108
|
3adant2 |
|
| 110 |
109
|
adantr |
|
| 111 |
99 110
|
eqeltrd |
|
| 112 |
111
|
exp520 |
|
| 113 |
112
|
com14 |
|
| 114 |
113
|
3ad2ant3 |
|
| 115 |
56 114
|
syld |
|
| 116 |
115
|
com25 |
|
| 117 |
116
|
com14 |
|
| 118 |
117
|
3adant2 |
|
| 119 |
118
|
3imp |
|
| 120 |
119
|
impcom |
|
| 121 |
120
|
imp |
|
| 122 |
|
eqidd |
|
| 123 |
|
simprl |
|
| 124 |
3 122 123 95
|
syl3anc |
|
| 125 |
|
eqid |
|
| 126 |
|
ccatw2s1p2 |
|
| 127 |
125 126
|
mpanl2 |
|
| 128 |
124 127
|
preq12d |
|
| 129 |
128
|
expcom |
|
| 130 |
129
|
a1i |
|
| 131 |
130
|
com13 |
|
| 132 |
131
|
3ad2ant1 |
|
| 133 |
132
|
3ad2ant1 |
|
| 134 |
133
|
com12 |
|
| 135 |
134
|
3adant3 |
|
| 136 |
135
|
imp31 |
|
| 137 |
|
simpr |
|
| 138 |
136 137
|
eqeltrd |
|
| 139 |
|
ovex |
|
| 140 |
|
fvex |
|
| 141 |
|
fveq2 |
|
| 142 |
|
fvoveq1 |
|
| 143 |
141 142
|
preq12d |
|
| 144 |
143
|
eleq1d |
|
| 145 |
|
fveq2 |
|
| 146 |
|
fvoveq1 |
|
| 147 |
145 146
|
preq12d |
|
| 148 |
147
|
eleq1d |
|
| 149 |
139 140 144 148
|
ralpr |
|
| 150 |
121 138 149
|
sylanbrc |
|
| 151 |
|
ralunb |
|
| 152 |
54 150 151
|
sylanbrc |
|