Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknonex2.v |
|
2 |
|
clwwlknonex2.e |
|
3 |
|
simpl |
|
4 |
3
|
adantr |
|
5 |
|
elfzonn0 |
|
6 |
5
|
adantl |
|
7 |
|
lencl |
|
8 |
|
elfzo0 |
|
9 |
|
nn0re |
|
10 |
9
|
adantr |
|
11 |
|
nn0re |
|
12 |
|
peano2rem |
|
13 |
11 12
|
syl |
|
14 |
13
|
adantl |
|
15 |
11
|
adantl |
|
16 |
10 14 15
|
3jca |
|
17 |
11
|
ltm1d |
|
18 |
17
|
adantl |
|
19 |
|
lttr |
|
20 |
19
|
expcomd |
|
21 |
16 18 20
|
sylc |
|
22 |
21
|
impancom |
|
23 |
22
|
3adant2 |
|
24 |
8 23
|
sylbi |
|
25 |
7 24
|
syl5com |
|
26 |
25
|
adantr |
|
27 |
26
|
imp |
|
28 |
|
ccat2s1fvw |
|
29 |
4 6 27 28
|
syl3anc |
|
30 |
29
|
eqcomd |
|
31 |
|
peano2nn0 |
|
32 |
6 31
|
syl |
|
33 |
|
1red |
|
34 |
10 33 15
|
ltaddsubd |
|
35 |
34
|
biimprd |
|
36 |
35
|
impancom |
|
37 |
36
|
3adant2 |
|
38 |
8 37
|
sylbi |
|
39 |
7 38
|
mpan9 |
|
40 |
39
|
adantlr |
|
41 |
|
ccat2s1fvw |
|
42 |
4 32 40 41
|
syl3anc |
|
43 |
42
|
eqcomd |
|
44 |
30 43
|
preq12d |
|
45 |
44
|
eleq1d |
|
46 |
45
|
ralbidva |
|
47 |
46
|
biimpd |
|
48 |
47
|
impancom |
|
49 |
48
|
3adant3 |
|
50 |
49
|
3ad2ant1 |
|
51 |
50
|
com12 |
|
52 |
51
|
a1dd |
|
53 |
52
|
3adant3 |
|
54 |
53
|
imp31 |
|
55 |
|
ax-1 |
|
56 |
55
|
3adant3 |
|
57 |
|
simpl |
|
58 |
|
oveq1 |
|
59 |
58
|
adantr |
|
60 |
|
eluzelcn |
|
61 |
|
2cnd |
|
62 |
|
1cnd |
|
63 |
60 61 62
|
subsub4d |
|
64 |
|
2p1e3 |
|
65 |
64
|
a1i |
|
66 |
65
|
oveq2d |
|
67 |
|
uznn0sub |
|
68 |
66 67
|
eqeltrd |
|
69 |
63 68
|
eqeltrd |
|
70 |
69
|
adantl |
|
71 |
59 70
|
eqeltrd |
|
72 |
71
|
ancoms |
|
73 |
72
|
adantl |
|
74 |
7 11
|
syl |
|
75 |
74
|
adantr |
|
76 |
75
|
ltm1d |
|
77 |
57 73 76
|
3jca |
|
78 |
77
|
ex |
|
79 |
78
|
adantr |
|
80 |
79
|
3ad2ant1 |
|
81 |
80
|
imp |
|
82 |
|
ccat2s1fvw |
|
83 |
81 82
|
syl |
|
84 |
|
nn0cn |
|
85 |
|
ax-1cn |
|
86 |
|
npcan |
|
87 |
84 85 86
|
sylancl |
|
88 |
7 87
|
syl |
|
89 |
88
|
adantr |
|
90 |
89
|
3ad2ant1 |
|
91 |
90
|
fveq2d |
|
92 |
|
simp1l |
|
93 |
|
eqidd |
|
94 |
|
simp2l |
|
95 |
|
ccatw2s1p1 |
|
96 |
92 93 94 95
|
syl3anc |
|
97 |
91 96
|
eqtrd |
|
98 |
97
|
adantr |
|
99 |
83 98
|
preq12d |
|
100 |
|
lsw |
|
101 |
100
|
adantl |
|
102 |
|
simpl |
|
103 |
101 102
|
preq12d |
|
104 |
103
|
eleq1d |
|
105 |
104
|
biimpd |
|
106 |
105
|
expcom |
|
107 |
106
|
com23 |
|
108 |
107
|
imp31 |
|
109 |
108
|
3adant2 |
|
110 |
109
|
adantr |
|
111 |
99 110
|
eqeltrd |
|
112 |
111
|
exp520 |
|
113 |
112
|
com14 |
|
114 |
113
|
3ad2ant3 |
|
115 |
56 114
|
syld |
|
116 |
115
|
com25 |
|
117 |
116
|
com14 |
|
118 |
117
|
3adant2 |
|
119 |
118
|
3imp |
|
120 |
119
|
impcom |
|
121 |
120
|
imp |
|
122 |
|
eqidd |
|
123 |
|
simprl |
|
124 |
3 122 123 95
|
syl3anc |
|
125 |
|
eqid |
|
126 |
|
ccatw2s1p2 |
|
127 |
125 126
|
mpanl2 |
|
128 |
124 127
|
preq12d |
|
129 |
128
|
expcom |
|
130 |
129
|
a1i |
|
131 |
130
|
com13 |
|
132 |
131
|
3ad2ant1 |
|
133 |
132
|
3ad2ant1 |
|
134 |
133
|
com12 |
|
135 |
134
|
3adant3 |
|
136 |
135
|
imp31 |
|
137 |
|
simpr |
|
138 |
136 137
|
eqeltrd |
|
139 |
|
ovex |
|
140 |
|
fvex |
|
141 |
|
fveq2 |
|
142 |
|
fvoveq1 |
|
143 |
141 142
|
preq12d |
|
144 |
143
|
eleq1d |
|
145 |
|
fveq2 |
|
146 |
|
fvoveq1 |
|
147 |
145 146
|
preq12d |
|
148 |
147
|
eleq1d |
|
149 |
139 140 144 148
|
ralpr |
|
150 |
121 138 149
|
sylanbrc |
|
151 |
|
ralunb |
|
152 |
54 150 151
|
sylanbrc |
|