Metamath Proof Explorer


Theorem clwwlknonfin

Description: In a finite graph G , the set of closed walks on vertex X of length N is also finite. (Contributed by Alexander van der Vekens, 26-Sep-2018) (Revised by AV, 25-Feb-2022) (Proof shortened by AV, 24-Mar-2022)

Ref Expression
Hypothesis clwwlknonfin.v V = Vtx G
Assertion clwwlknonfin V Fin X ClWWalksNOn G N Fin

Proof

Step Hyp Ref Expression
1 clwwlknonfin.v V = Vtx G
2 clwwlknon X ClWWalksNOn G N = w N ClWWalksN G | w 0 = X
3 1 eleq1i V Fin Vtx G Fin
4 clwwlknfi Vtx G Fin N ClWWalksN G Fin
5 3 4 sylbi V Fin N ClWWalksN G Fin
6 rabfi N ClWWalksN G Fin w N ClWWalksN G | w 0 = X Fin
7 5 6 syl V Fin w N ClWWalksN G | w 0 = X Fin
8 2 7 eqeltrid V Fin X ClWWalksNOn G N Fin