Metamath Proof Explorer


Theorem clwwlknonmpo

Description: ( ClWWalksNOnG ) is an operator mapping a vertex v and a nonnegative integer n to the set of closed walks on v of length n as words over the set of vertices in a graph G . (Contributed by AV, 25-Feb-2022) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Assertion clwwlknonmpo ClWWalksNOn G = v Vtx G , n 0 w n ClWWalksN G | w 0 = v

Proof

Step Hyp Ref Expression
1 fveq2 g = G Vtx g = Vtx G
2 eqidd g = G 0 = 0
3 oveq2 g = G n ClWWalksN g = n ClWWalksN G
4 3 rabeqdv g = G w n ClWWalksN g | w 0 = v = w n ClWWalksN G | w 0 = v
5 1 2 4 mpoeq123dv g = G v Vtx g , n 0 w n ClWWalksN g | w 0 = v = v Vtx G , n 0 w n ClWWalksN G | w 0 = v
6 df-clwwlknon ClWWalksNOn = g V v Vtx g , n 0 w n ClWWalksN g | w 0 = v
7 fvex Vtx G V
8 nn0ex 0 V
9 7 8 mpoex v Vtx G , n 0 w n ClWWalksN G | w 0 = v V
10 5 6 9 fvmpt G V ClWWalksNOn G = v Vtx G , n 0 w n ClWWalksN G | w 0 = v
11 fvprc ¬ G V ClWWalksNOn G =
12 fvprc ¬ G V Vtx G =
13 12 orcd ¬ G V Vtx G = 0 =
14 0mpo0 Vtx G = 0 = v Vtx G , n 0 w n ClWWalksN G | w 0 = v =
15 13 14 syl ¬ G V v Vtx G , n 0 w n ClWWalksN G | w 0 = v =
16 11 15 eqtr4d ¬ G V ClWWalksNOn G = v Vtx G , n 0 w n ClWWalksN G | w 0 = v
17 10 16 pm2.61i ClWWalksNOn G = v Vtx G , n 0 w n ClWWalksN G | w 0 = v