| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknonwwlknonb.v |  | 
						
							| 2 |  | isclwwlknon |  | 
						
							| 3 |  | 3anan32 |  | 
						
							| 4 |  | s1eq |  | 
						
							| 5 | 4 | oveq2d |  | 
						
							| 6 | 5 | eleq1d |  | 
						
							| 7 | 6 | biimpac |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 |  | fvex |  | 
						
							| 10 |  | eleq1 |  | 
						
							| 11 | 9 10 | mpbii |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 1 12 | wwlknp |  | 
						
							| 14 |  | simprrl |  | 
						
							| 15 |  | simpl |  | 
						
							| 16 | 15 | anim2i |  | 
						
							| 17 | 16 | ancomd |  | 
						
							| 18 |  | ccats1alpha |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 19 20 | biimtrdi |  | 
						
							| 22 | 21 | com12 |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 | 23 | imp |  | 
						
							| 25 |  | nnnn0 |  | 
						
							| 26 |  | ccatws1lenp1b |  | 
						
							| 27 | 25 26 | sylan2 |  | 
						
							| 28 | 27 | biimpd |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 | 29 | com12 |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 | 31 | imp |  | 
						
							| 33 | 32 | eqcomd |  | 
						
							| 34 | 14 24 33 | 3jca |  | 
						
							| 35 | 34 | ex |  | 
						
							| 36 | 35 | 3adant3 |  | 
						
							| 37 | 13 36 | syl |  | 
						
							| 38 | 37 | expd |  | 
						
							| 39 | 11 38 | syl5com |  | 
						
							| 40 | 6 39 | sylbid |  | 
						
							| 41 | 40 | com13 |  | 
						
							| 42 | 41 | imp32 |  | 
						
							| 43 |  | ccats1val2 |  | 
						
							| 44 | 42 43 | syl |  | 
						
							| 45 |  | ccat1st1st |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 | 5 | fveq1d |  | 
						
							| 48 | 47 | eqeq1d |  | 
						
							| 49 | 48 | adantl |  | 
						
							| 50 | 46 49 | syl5ibcom |  | 
						
							| 51 | 50 | imp |  | 
						
							| 52 |  | simprr |  | 
						
							| 53 | 51 52 | eqtrd |  | 
						
							| 54 | 8 44 53 | jca31 |  | 
						
							| 55 | 54 | ex |  | 
						
							| 56 |  | simprl |  | 
						
							| 57 | 27 | biimpcd |  | 
						
							| 58 | 57 | adantl |  | 
						
							| 59 | 58 | imp |  | 
						
							| 60 | 59 | eqcomd |  | 
						
							| 61 | 56 60 | jca |  | 
						
							| 62 | 61 | ex |  | 
						
							| 63 | 62 | 3adant3 |  | 
						
							| 64 | 13 63 | syl |  | 
						
							| 65 | 64 | imp |  | 
						
							| 66 |  | eleq1 |  | 
						
							| 67 |  | lbfzo0 |  | 
						
							| 68 | 67 | biimpri |  | 
						
							| 69 | 66 68 | biimtrdi |  | 
						
							| 70 | 69 | com12 |  | 
						
							| 71 | 70 | ad2antll |  | 
						
							| 72 | 71 | anim2d |  | 
						
							| 73 | 65 72 | mpd |  | 
						
							| 74 |  | ccats1val1 |  | 
						
							| 75 | 73 74 | syl |  | 
						
							| 76 | 75 | eqeq1d |  | 
						
							| 77 | 76 | biimpd |  | 
						
							| 78 | 77 | ex |  | 
						
							| 79 | 78 | adantr |  | 
						
							| 80 | 79 | com3r |  | 
						
							| 81 | 80 | impcom |  | 
						
							| 82 | 6 | biimparc |  | 
						
							| 83 |  | simpr |  | 
						
							| 84 | 82 83 | jca |  | 
						
							| 85 | 84 | ex |  | 
						
							| 86 | 85 | ad2antrr |  | 
						
							| 87 | 81 86 | syldc |  | 
						
							| 88 | 55 87 | impbid |  | 
						
							| 89 | 3 88 | bitr4id |  | 
						
							| 90 | 1 | clwwlknwwlksnb |  | 
						
							| 91 | 90 | anbi1d |  | 
						
							| 92 | 89 91 | bitr4d |  | 
						
							| 93 | 2 92 | bitr4id |  | 
						
							| 94 |  | wwlknon |  | 
						
							| 95 | 93 94 | bitr4di |  |