Metamath Proof Explorer


Theorem clwwlknp

Description: Properties of a set being a closed walk (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018) (Revised by AV, 24-Apr-2021) (Proof shortened by AV, 23-Mar-2022)

Ref Expression
Hypotheses isclwwlknx.v V = Vtx G
isclwwlknx.e E = Edg G
Assertion clwwlknp W N ClWWalksN G W Word V W = N i 0 ..^ N 1 W i W i + 1 E lastS W W 0 E

Proof

Step Hyp Ref Expression
1 isclwwlknx.v V = Vtx G
2 isclwwlknx.e E = Edg G
3 1 clwwlknbp W N ClWWalksN G W Word V W = N
4 simpr W N ClWWalksN G W Word V W = N W Word V W = N
5 clwwlknnn W N ClWWalksN G N
6 1 2 isclwwlknx N W N ClWWalksN G W Word V i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E W = N
7 3simpc W Word V i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E
8 7 adantr W Word V i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E W = N i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E
9 6 8 syl6bi N W N ClWWalksN G i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E
10 5 9 mpcom W N ClWWalksN G i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E
11 10 adantr W N ClWWalksN G W Word V W = N i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E
12 oveq1 W = N W 1 = N 1
13 12 oveq2d W = N 0 ..^ W 1 = 0 ..^ N 1
14 13 raleqdv W = N i 0 ..^ W 1 W i W i + 1 E i 0 ..^ N 1 W i W i + 1 E
15 14 anbi1d W = N i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E i 0 ..^ N 1 W i W i + 1 E lastS W W 0 E
16 15 ad2antll W N ClWWalksN G W Word V W = N i 0 ..^ W 1 W i W i + 1 E lastS W W 0 E i 0 ..^ N 1 W i W i + 1 E lastS W W 0 E
17 11 16 mpbid W N ClWWalksN G W Word V W = N i 0 ..^ N 1 W i W i + 1 E lastS W W 0 E
18 4 17 jca W N ClWWalksN G W Word V W = N W Word V W = N i 0 ..^ N 1 W i W i + 1 E lastS W W 0 E
19 3 18 mpdan W N ClWWalksN G W Word V W = N i 0 ..^ N 1 W i W i + 1 E lastS W W 0 E
20 3anass W Word V W = N i 0 ..^ N 1 W i W i + 1 E lastS W W 0 E W Word V W = N i 0 ..^ N 1 W i W i + 1 E lastS W W 0 E
21 19 20 sylibr W N ClWWalksN G W Word V W = N i 0 ..^ N 1 W i W i + 1 E lastS W W 0 E